相同的代码,相同的输入,有时运行速度快,有时慢,为什么?

Ken*_*ent 5 java warm-up

我写了一些java类来评估/演示不同的排序算法.但是当我运行我的演示类时,我感到困惑.希望你们能给我一个解释.(这个问题不是作业.)

首先,我列出一些与此问题相关的代码.

AbstractDemo

public abstract class AbstractDemo {
    protected final int BIG_ARRAY_SIZE = 20000;
    protected final int SMALL_ARRAY_SIZE = 14;
    protected Stopwatch stopwatch = new Stopwatch();

    public final void doDemo() {
        prepareDemo();
        specificDemo();
    }

    protected abstract void prepareDemo();

    protected abstract void specificDemo();

    protected final void printInfo(final String text) {
        System.out.println(text);
    }
}
Run Code Online (Sandbox Code Playgroud)

SortingDemo

public class SortingDemo extends AbstractDemo {
    private static final String FMT = "%-10s| %-21s| %7s ms.";
    private static final String SPL = AlgUtil.lineSeparator('-', 45);
    private static final String SPLT = AlgUtil.lineSeparator('=', 45);

    private int[] data;

    private final List<Sorting> demoList = new LinkedList<Sorting>();

    @Override
    protected void specificDemo() {
        int[] testData;
        //*** this comment is interesting!!! for (int x = 1; x < 6; x++) {  

            printInfo(String.format("Sorting %7s elements", data.length));
            printInfo(SPLT);
            for (final Sorting sort : demoList) {

                // here I made a copy of the original Array, avoid to sort an already sorted array.
                testData = new int[data.length];
                System.arraycopy(data, 0, testData, 0, data.length);
                stopwatch.start();
                // sort
                sort.sort(testData);
                stopwatch.stop();
                printInfo(String.format(FMT, sort.getBigO(), sort.getClass().getSimpleName(), stopwatch.read()));
                printInfo(SPL);
                testData = null;
                stopwatch.reset();
            }
        //}
    }

    @Override
    protected void prepareDemo() {
        data = AlgUtil.getRandomIntArray(BIG_ARRAY_SIZE, BIG_ARRAY_SIZE * 5, false);
        demoList.add(new InsertionSort());
        demoList.add(new SelectionSort());
        demoList.add(new BubbleSort());
        demoList.add(new MergeSort());  //here is interesting too
        demoList.add(new OptimizedMergeSort());

    }

    public static void main(final String[] args) {
        final AbstractDemo sortingDemo = new SortingDemo();
        sortingDemo.doDemo();
    }
}
Run Code Online (Sandbox Code Playgroud)

跑表

public class Stopwatch {
    private boolean running;
    private long startTime;
    private long elapsedMillisec;

    public void start() {
        if (!running) {
            this.startTime = System.currentTimeMillis();
            running = true;
        } else {
            throw new IllegalStateException("the stopwatch is already running");
        }
    }

    public void stop() {
        if (running) {
            elapsedMillisec = System.currentTimeMillis() - startTime;
            running = false;
        } else {
            throw new IllegalStateException("the stopwatch is not running");
        }
    }

    public void reset() {
        elapsedMillisec = 0;

    }

    public long read() {
        if (running) {
            elapsedMillisec = System.currentTimeMillis() - startTime;
        }
        return this.elapsedMillisec;
    }

}
Run Code Online (Sandbox Code Playgroud)

生成随机数组的方法

public static int[] getRandomIntArray(final int len, final int max, boolean allowNegative) {
        final int[] intArray = new int[len];
        final Random rand = new Random();
        rand.setSeed(20100102);

        if (!allowNegative) {
            if (max <= 0) {
                throw new IllegalArgumentException("max must be possitive if allowNegative false");
            }
            for (int i = 0; i < intArray.length; i++) {
                intArray[i] = rand.nextInt(max);
            }
        } else {
            int n;
            int i = 0;
            while (i < len) {
                n = rand.nextInt();
                if (n < max) {
                    intArray[i] = n;
                    i++;
                }
            }
        }

        return intArray;
    }
Run Code Online (Sandbox Code Playgroud)

你可以看到,我生成了一个带有20000个元素的int数组.因为我在getRandomIntArray方法中有一个固定的种子,所以每次调用它时都会有相同的数组.SortingDemo类有main方法,如果我运行这个类,我得到输出:

Sorting   20000 elements
=============================================
O(n^2)    | InsertionSort        |     101 ms.
---------------------------------------------
O(n^2)    | SelectionSort        |     667 ms.
---------------------------------------------
O(n^2)    | BubbleSort           |    1320 ms.
---------------------------------------------
O(nlog(n))| MergeSort            |      39 ms.
---------------------------------------------
O(?)      | OptimizedMergeSort   |      11 ms.
---------------------------------------------
Run Code Online (Sandbox Code Playgroud)

看起来不错.现在有些让我感到困惑的事情.如果我在SortingDemo中更改demoList.add()序列,请说:

demoList.add(new InsertionSort());
    demoList.add(new SelectionSort());
    demoList.add(new BubbleSort());
    // OptimizedMergeSort before Mergesort
    demoList.add(new OptimizedMergeSort()); 
    demoList.add(new MergeSort());
Run Code Online (Sandbox Code Playgroud)

我有:

Sorting   20000 elements
=============================================
O(n^2)    | InsertionSort        |     103 ms.
---------------------------------------------
O(n^2)    | SelectionSort        |     676 ms.
---------------------------------------------
O(n^2)    | BubbleSort           |    1313 ms.
---------------------------------------------
O(?)      | OptimizedMergeSort   |      41 ms.
---------------------------------------------
O(nlog(n))| MergeSort            |      14 ms.
---------------------------------------------
Run Code Online (Sandbox Code Playgroud)

为什么输出与第一次运行不同?OptimizedMergeSort花费的时间比普通MergeSort要长......

如果我取消注释for (int x=1; x<6; x++)SortingDemo中的行,(用相同的数组运行测试5次)我得到:

Sorting   20000 elements
=============================================
O(n^2)    | InsertionSort        |     101 ms.
---------------------------------------------
O(n^2)    | SelectionSort        |     668 ms.
---------------------------------------------
O(n^2)    | BubbleSort           |    1311 ms.
---------------------------------------------
O(?)      | OptimizedMergeSort   |      37 ms.
---------------------------------------------
O(nlog(n))| MergeSort            |      10 ms.
---------------------------------------------

Sorting   20000 elements
=============================================
O(n^2)    | InsertionSort        |      94 ms.
---------------------------------------------
O(n^2)    | SelectionSort        |     665 ms.
---------------------------------------------
O(n^2)    | BubbleSort           |    1308 ms.
---------------------------------------------
O(?)      | OptimizedMergeSort   |       5 ms.
---------------------------------------------
O(nlog(n))| MergeSort            |       7 ms.
---------------------------------------------

Sorting   20000 elements
=============================================
O(n^2)    | InsertionSort        |     116 ms.
---------------------------------------------
O(n^2)    | SelectionSort        |     318 ms.
---------------------------------------------
O(n^2)    | BubbleSort           |     969 ms.
---------------------------------------------
O(?)      | OptimizedMergeSort   |       5 ms.
---------------------------------------------
O(nlog(n))| MergeSort            |      10 ms.
---------------------------------------------

Sorting   20000 elements
=============================================
O(n^2)    | InsertionSort        |     116 ms.
---------------------------------------------
O(n^2)    | SelectionSort        |     319 ms.
---------------------------------------------
O(n^2)    | BubbleSort           |     964 ms.
---------------------------------------------
O(?)      | OptimizedMergeSort   |       5 ms.
---------------------------------------------
O(nlog(n))| MergeSort            |       5 ms.
---------------------------------------------

Sorting   20000 elements
=============================================
O(n^2)    | InsertionSort        |     116 ms.
---------------------------------------------
O(n^2)    | SelectionSort        |     320 ms.
---------------------------------------------
O(n^2)    | BubbleSort           |     963 ms.
---------------------------------------------
O(?)      | OptimizedMergeSort   |       4 ms.
---------------------------------------------
O(nlog(n))| MergeSort            |       6 ms.
---------------------------------------------
Run Code Online (Sandbox Code Playgroud)

对于其他排序,结果看起来合理.但是对于mergeSort,为什么第一次运行比以后花费更长的时间?37ms:OptimizedMergeSort为4ms.

我认为即使Optimized/MergeSort的实现错误,输出应该保持不变,为什么有时同一个方法调用需要更长的时间,有时更短的时间?

作为信息,所有那些*Sort类扩展了一个超级抽象类Sorting.它有一个抽象的方法void sort(int[] data)

MergeSort有mergeSorting方法和merge()方法.OptimizedMergeSort扩展了MergeSort和覆盖mergeSorting()方法(因为当数组大小<= 7时,它将执行insertSort)并重用类中的merge()方法MergeSort.

感谢您阅读这篇长篇文章和代码.如果你们能给我一些解释,我感激不尽.

所有测试都在Linux下的Eclipse中完成.

NPE*_*NPE 4

对 Java 代码进行微基准测试是出了名的棘手。

即时编译器很可能会在某个时刻启动,将 Java 字节码编译为本机机器代码。每次编译都需要时间,但生成的代码可能运行得更快。

还有其他陷阱,但我认为以上是您的情况中最有可能的陷阱。

以下答案非常值得一读:https ://stackoverflow.com/a/513259/367273