我们有以下串行C代码在运行
两个向量a []和b []:
double a[20000],b[20000],r=0.9;
for(int i=1;i<=10000;++i)
{
a[i]=r*a[i]+(1-r)*b[i]];
errors=max(errors,fabs(a[i]-b[i]);
b[i]=a[i];
}
Run Code Online (Sandbox Code Playgroud)
请告诉我们如何将此代码移植到CUDA和Cublas?
使用Thrust也可以实现这种减少thrust::transform_reduce.这个解决方案融合了整个操作,正如talonmies建议的那样:
#include <thrust/device_vector.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/transform_reduce.h>
#include <thrust/functional.h>
// this functor unpacks a tuple and then computes
// a weighted absolute difference of its members
struct weighted_absolute_difference
{
double r;
weighted_absolute_difference(const double r)
: r(r)
{}
__host__ __device__
double operator()(thrust::tuple<double,double> t)
{
double a = thrust::get<0>(t);
double b = thrust::get<1>(t);
a = r * a + (1.0 - r) * b;
return fabs(a - b);
}
};
int main()
{
using namespace thrust;
const std::size_t n = 20000;
const double r = 0.9;
device_vector<double> a(n), b(n);
// initialize a & b
...
// do the reduction
double result =
transform_reduce(make_zip_iterator(make_tuple(a.begin(), b.begin())),
make_zip_iterator(make_tuple(a.end(), b.end())),
weighted_absolute_difference(r),
-1.f,
maximum<double>());
// note that this solution does not set
// a[i] = r * a[i] + (1 - r) * b[i]
return 0;
}
Run Code Online (Sandbox Code Playgroud)
请注意,我们不会a[i] = r * a[i] + (1 - r) * b[i]在此解决方案中执行赋值,但在使用简化后执行此操作会很简单thrust::transform.transform_reduce在两个仿函数中修改参数是不安全的.
| 归档时间: |
|
| 查看次数: |
1107 次 |
| 最近记录: |