Mar*_*air 25 database postgresql performance sql-execution-plan postgresql-performance
使用PostgreSQL 8.4.9,我对查询的PostgreSQL性能有一个奇怪的问题.此查询正在选择3D卷中的一组点,使用a LEFT OUTER JOIN
添加相关ID列,其中存在相关ID.x
范围的微小变化可能导致PostgreSQL选择不同的查询计划,执行时间从0.01秒到50秒.这是有问题的查询:
SELECT treenode.id AS id,
treenode.parent_id AS parentid,
(treenode.location).x AS x,
(treenode.location).y AS y,
(treenode.location).z AS z,
treenode.confidence AS confidence,
treenode.user_id AS user_id,
treenode.radius AS radius,
((treenode.location).z - 50) AS z_diff,
treenode_class_instance.class_instance_id AS skeleton_id
FROM treenode LEFT OUTER JOIN
(treenode_class_instance INNER JOIN
class_instance ON treenode_class_instance.class_instance_id
= class_instance.id
AND class_instance.class_id = 7828307)
ON (treenode_class_instance.treenode_id = treenode.id
AND treenode_class_instance.relation_id = 7828321)
WHERE treenode.project_id = 4
AND (treenode.location).x >= 8000
AND (treenode.location).x <= (8000 + 4736)
AND (treenode.location).y >= 22244
AND (treenode.location).y <= (22244 + 3248)
AND (treenode.location).z >= 0
AND (treenode.location).z <= 100
ORDER BY parentid DESC, id, z_diff
LIMIT 400;
Run Code Online (Sandbox Code Playgroud)
该查询需要将近一分钟,如果我添加EXPLAIN
到该查询的前面,似乎使用以下查询计划:
Limit (cost=56185.16..56185.17 rows=1 width=89)
-> Sort (cost=56185.16..56185.17 rows=1 width=89)
Sort Key: treenode.parent_id, treenode.id, (((treenode.location).z - 50::double precision))
-> Nested Loop Left Join (cost=6715.16..56185.15 rows=1 width=89)
Join Filter: (treenode_class_instance.treenode_id = treenode.id)
-> Bitmap Heap Scan on treenode (cost=148.55..184.16 rows=1 width=81)
Recheck Cond: (((location).x >= 8000::double precision) AND ((location).x <= 12736::double precision) AND ((location).z >= 0::double precision) AND ((location).z <= 100::double precision))
Filter: (((location).y >= 22244::double precision) AND ((location).y <= 25492::double precision) AND (project_id = 4))
-> BitmapAnd (cost=148.55..148.55 rows=9 width=0)
-> Bitmap Index Scan on location_x_index (cost=0.00..67.38 rows=2700 width=0)
Index Cond: (((location).x >= 8000::double precision) AND ((location).x <= 12736::double precision))
-> Bitmap Index Scan on location_z_index (cost=0.00..80.91 rows=3253 width=0)
Index Cond: (((location).z >= 0::double precision) AND ((location).z <= 100::double precision))
-> Hash Join (cost=6566.61..53361.69 rows=211144 width=16)
Hash Cond: (treenode_class_instance.class_instance_id = class_instance.id)
-> Seq Scan on treenode_class_instance (cost=0.00..25323.79 rows=969285 width=16)
Filter: (relation_id = 7828321)
-> Hash (cost=5723.54..5723.54 rows=51366 width=8)
-> Seq Scan on class_instance (cost=0.00..5723.54 rows=51366 width=8)
Filter: (class_id = 7828307)
(20 rows)
Run Code Online (Sandbox Code Playgroud)
但是,如果我8000
在x
范围条件中替换10644
,则查询将在几分之一秒内执行并使用此查询计划:
Limit (cost=58378.94..58378.95 rows=2 width=89)
-> Sort (cost=58378.94..58378.95 rows=2 width=89)
Sort Key: treenode.parent_id, treenode.id, (((treenode.location).z - 50::double precision))
-> Hash Left Join (cost=57263.11..58378.93 rows=2 width=89)
Hash Cond: (treenode.id = treenode_class_instance.treenode_id)
-> Bitmap Heap Scan on treenode (cost=231.12..313.44 rows=2 width=81)
Recheck Cond: (((location).z >= 0::double precision) AND ((location).z <= 100::double precision) AND ((location).x >= 10644::double precision) AND ((location).x <= 15380::double precision))
Filter: (((location).y >= 22244::double precision) AND ((location).y <= 25492::double precision) AND (project_id = 4))
-> BitmapAnd (cost=231.12..231.12 rows=21 width=0)
-> Bitmap Index Scan on location_z_index (cost=0.00..80.91 rows=3253 width=0)
Index Cond: (((location).z >= 0::double precision) AND ((location).z <= 100::double precision))
-> Bitmap Index Scan on location_x_index (cost=0.00..149.95 rows=6157 width=0)
Index Cond: (((location).x >= 10644::double precision) AND ((location).x <= 15380::double precision))
-> Hash (cost=53361.69..53361.69 rows=211144 width=16)
-> Hash Join (cost=6566.61..53361.69 rows=211144 width=16)
Hash Cond: (treenode_class_instance.class_instance_id = class_instance.id)
-> Seq Scan on treenode_class_instance (cost=0.00..25323.79 rows=969285 width=16)
Filter: (relation_id = 7828321)
-> Hash (cost=5723.54..5723.54 rows=51366 width=8)
-> Seq Scan on class_instance (cost=0.00..5723.54 rows=51366 width=8)
Filter: (class_id = 7828307)
(21 rows)
Run Code Online (Sandbox Code Playgroud)
我远在解析这些查询计划的专家,但明显的差别似乎是一个x
范围,它使用一Hash Left Join
对LEFT OUTER JOIN
(这是非常快的),而与其他范围内它采用了Nested Loop Left Join
(这似乎是很慢).在这两种情况下,查询返回大约90行.如果我SET ENABLE_NESTLOOP TO FALSE
在查询的慢速版本之前执行,它会非常快,但我知道使用该设置通常是一个坏主意.
例如,我可以创建一个特定的索引,以使查询规划者更有可能选择明显更有效的策略吗?有人可以建议为什么PostgreSQL的查询规划器应该为这些查询之一选择这么差的策略吗?下面我列出了可能有用的架构的详细信息.
treenode表有900,000行,定义如下:
Table "public.treenode"
Column | Type | Modifiers
---------------+--------------------------+------------------------------------------------------
id | bigint | not null default nextval('concept_id_seq'::regclass)
user_id | bigint | not null
creation_time | timestamp with time zone | not null default now()
edition_time | timestamp with time zone | not null default now()
project_id | bigint | not null
location | double3d | not null
parent_id | bigint |
radius | double precision | not null default 0
confidence | integer | not null default 5
Indexes:
"treenode_pkey" PRIMARY KEY, btree (id)
"treenode_id_key" UNIQUE, btree (id)
"location_x_index" btree (((location).x))
"location_y_index" btree (((location).y))
"location_z_index" btree (((location).z))
Foreign-key constraints:
"treenode_parent_id_fkey" FOREIGN KEY (parent_id) REFERENCES treenode(id)
Referenced by:
TABLE "treenode_class_instance" CONSTRAINT "treenode_class_instance_treenode_id_fkey" FOREIGN KEY (treenode_id) REFERENCES treenode(id) ON DELETE CASCADE
TABLE "treenode" CONSTRAINT "treenode_parent_id_fkey" FOREIGN KEY (parent_id) REFERENCES treenode(id)
Triggers:
on_edit_treenode BEFORE UPDATE ON treenode FOR EACH ROW EXECUTE PROCEDURE on_edit()
Inherits: location
Run Code Online (Sandbox Code Playgroud)
该double3d
复合型定义如下:
Composite type "public.double3d"
Column | Type
--------+------------------
x | double precision
y | double precision
z | double precision
Run Code Online (Sandbox Code Playgroud)
联接中涉及的另外两个表是treenode_class_instance
:
Table "public.treenode_class_instance"
Column | Type | Modifiers
-------------------+--------------------------+------------------------------------------------------
id | bigint | not null default nextval('concept_id_seq'::regclass)
user_id | bigint | not null
creation_time | timestamp with time zone | not null default now()
edition_time | timestamp with time zone | not null default now()
project_id | bigint | not null
relation_id | bigint | not null
treenode_id | bigint | not null
class_instance_id | bigint | not null
Indexes:
"treenode_class_instance_pkey" PRIMARY KEY, btree (id)
"treenode_class_instance_id_key" UNIQUE, btree (id)
"idx_class_instance_id" btree (class_instance_id)
Foreign-key constraints:
"treenode_class_instance_class_instance_id_fkey" FOREIGN KEY (class_instance_id) REFERENCES class_instance(id) ON DELETE CASCADE
"treenode_class_instance_relation_id_fkey" FOREIGN KEY (relation_id) REFERENCES relation(id)
"treenode_class_instance_treenode_id_fkey" FOREIGN KEY (treenode_id) REFERENCES treenode(id) ON DELETE CASCADE
"treenode_class_instance_user_id_fkey" FOREIGN KEY (user_id) REFERENCES "user"(id)
Triggers:
on_edit_treenode_class_instance BEFORE UPDATE ON treenode_class_instance FOR EACH ROW EXECUTE PROCEDURE on_edit()
Inherits: relation_instance
Run Code Online (Sandbox Code Playgroud)
......和class_instance
:
Table "public.class_instance"
Column | Type | Modifiers
---------------+--------------------------+------------------------------------------------------
id | bigint | not null default nextval('concept_id_seq'::regclass)
user_id | bigint | not null
creation_time | timestamp with time zone | not null default now()
edition_time | timestamp with time zone | not null default now()
project_id | bigint | not null
class_id | bigint | not null
name | character varying(255) | not null
Indexes:
"class_instance_pkey" PRIMARY KEY, btree (id)
"class_instance_id_key" UNIQUE, btree (id)
Foreign-key constraints:
"class_instance_class_id_fkey" FOREIGN KEY (class_id) REFERENCES class(id)
"class_instance_user_id_fkey" FOREIGN KEY (user_id) REFERENCES "user"(id)
Referenced by:
TABLE "class_instance_class_instance" CONSTRAINT "class_instance_class_instance_class_instance_a_fkey" FOREIGN KEY (class_instance_a) REFERENCES class_instance(id) ON DELETE CASCADE
TABLE "class_instance_class_instance" CONSTRAINT "class_instance_class_instance_class_instance_b_fkey" FOREIGN KEY (class_instance_b) REFERENCES class_instance(id) ON DELETE CASCADE
TABLE "connector_class_instance" CONSTRAINT "connector_class_instance_class_instance_id_fkey" FOREIGN KEY (class_instance_id) REFERENCES class_instance(id)
TABLE "treenode_class_instance" CONSTRAINT "treenode_class_instance_class_instance_id_fkey" FOREIGN KEY (class_instance_id) REFERENCES class_instance(id) ON DELETE CASCADE
Triggers:
on_edit_class_instance BEFORE UPDATE ON class_instance FOR EACH ROW EXECUTE PROCEDURE on_edit()
Inherits: concept
Run Code Online (Sandbox Code Playgroud)
Erw*_*ter 46
如果查询规划器做出错误的决定,那么它主要是两件事之一:
你跑得ANALYZE
够吗?它也是流行的组合形式VACUUM ANALYZE
.如果启用了autovacuum(这是现代Postgres中的默认值),ANALYZE
则会自动运行.但考虑一下:
(前两个答案仍然适用于Postgres 9.6.)
如果您的表很大并且数据分布不规则,那么提高default_statistics_target
可能会有所帮助.或者更确切地说,只需设置相关列的统计目标(基本上是查询的子句WHERE
或JOIN
子句):
ALTER TABLE ... ALTER COLUMN ... SET STATISTICS 400; -- calibrate number
Run Code Online (Sandbox Code Playgroud)
目标可以设置在0到10000的范围内;
ANALYZE
之后再次运行(在相关表格上).
阅读手册中的Planner Cost Constants一章.
查看这个通常有用的PostgreSQL Wiki页面上的章节default_statistics_target和random_page_cost.
还有许多其他可能的原因,但这些是迄今为止最常见的原因.
除非您考虑数据库统计信息和自定义数据类型的组合,否则我怀疑这与坏的统计信息有关.
我的猜测是PostgreSQL正在选择嵌套循环连接,因为它会查看谓词(treenode.location).x >= 8000 AND (treenode.location).x <= (8000 + 4736)
并在比较算法中做一些时髦的事情.甲嵌套循环通常要当你在联接的内侧的数据量小的情况下使用.
但是,一旦你将常数切换到10736,你就会得到一个不同的计划.该计划总是有可能足够复杂,以至于基因查询优化(GEQO)正在进行,您将看到非确定性计划构建的副作用.查询中的评估顺序存在足够的差异,使我认为这是正在发生的事情.
一种选择是使用参数化/预准备语句来检查,而不是使用ad hoc代码.由于您在三维空间中工作,您可能还想考虑使用PostGIS.虽然它可能过度,但它也可能为您提供使这些查询正常运行所需的性能.
虽然强制规划者行为不是最佳选择,但有时我们最终会做出比软件更好的决策.
归档时间: |
|
查看次数: |
19621 次 |
最近记录: |