asi*_*sim 2 wolfram-mathematica hessian-matrix
我期待看到如何编译计算对数似然的Hessian的函数,以便它可以有效地与不同的参数集一起使用.
这是一个例子.
假设我们有一个函数来计算logit模型的对数似然,其中y是向量,x是矩阵.beta是参数的向量.
pLike[y_, x_, beta_] :=
Module[
{xbeta, logDen},
xbeta = x.beta;
logDen = Log[1.0 + Exp[xbeta]];
Total[y*xbeta - logDen]
]
Run Code Online (Sandbox Code Playgroud)
鉴于以下数据,我们可以如下使用它
In[1]:= beta = {0.5, -1.0, 1.0};
In[2]:= xmat =
Table[Flatten[{1,
RandomVariate[NormalDistribution[0.0, 1.0], {2}]}], {500}];
In[3]:= xbeta = xmat.beta;
In[4]:= prob = Exp[xbeta]/(1.0 + Exp[xbeta]);
In[5]:= y = Map[RandomVariate[BernoulliDistribution[#]] &, prob] ;
In[6]:= Tally[y]
Out[6]= {{1, 313}, {0, 187}}
In[9]:= pLike[y, xmat, beta]
Out[9]= -272.721
Run Code Online (Sandbox Code Playgroud)
我们可以写下它的粗麻布如下
hessian[y_, x_, z_] :=
Module[{},
D[pLike[y, x, z], {z, 2}]
]
In[10]:= z = {z1, z2, z3}
Out[10]= {z1, z2, z3}
In[11]:= AbsoluteTiming[hess = hessian[y, xmat, z];]
Out[11]= {0.1248040, Null}
In[12]:= AbsoluteTiming[
Table[hess /. {z1 -> 0.0, z2 -> -0.5, z3 -> 0.8}, {100}];]
Out[12]= {14.3524600, Null}
Run Code Online (Sandbox Code Playgroud)
出于效率原因,我可以如下编译原始似然函数
pLikeC = Compile[{{y, _Real, 1}, {x, _Real, 2}, {beta, _Real, 1}},
Module[
{xbeta, logDen},
xbeta = x.beta;
logDen = Log[1.0 + Exp[xbeta]];
Total[y*xbeta - logDen]
],
CompilationTarget -> "C", Parallelization -> True,
RuntimeAttributes -> {Listable}
];
Run Code Online (Sandbox Code Playgroud)
产生与pLike相同的答案
In[10]:= pLikeC[y, xmat, beta]
Out[10]= -272.721
Run Code Online (Sandbox Code Playgroud)
我正在寻找一种简单的方法来获得类似的,粗体函数的编译版本,因为我有兴趣多次评估它.
列昂尼德已经打败了我,但我会发布我的想法,只是为了笑.
这里的主要问题是编译适用于数值函数,而D
需要符号.因此,诀窍是首先使用与您打算使用的特定矩阵大小相同的变量来定义pLike函数,例如,
pLike[{y1, y2}, {{x1, x2, x3}, {x12, x22, x32}}, {z1, z2, z3}]
Run Code Online (Sandbox Code Playgroud)
黑森州:
D[pLike[{y1, y2}, {{x1, x2, x3}, {x12, x22, x32}}, {z1, z2, z3}], {{z1, z2, z3}, 2}]
Run Code Online (Sandbox Code Playgroud)
此功能应该是可编译的,因为它仅取决于数量.
为了概括各种向量,可以构建这样的东西:
Block[{ny = 2, nx = 3, z1, z2, z3},
hessian[
Table[ToExpression["y" <> ToString[i] <> "_"], {i, ny}],
Table[ToExpression["xr" <> ToString[i] <> "c" <> ToString[j] <> "_"],
{i, ny}, {j, nx}], {z1_, z2_, z3_}
] =
D[
pLike[
Table[ToExpression["y" <> ToString[i]], {i, ny}],
Table[ToExpression["xr" <> ToString[i] <> "c" <> ToString[j]],
{i, ny}, {j, nx}], {z1, z2, z3}
],
{{z1, z2, z3}, 2}
]
]
Run Code Online (Sandbox Code Playgroud)
对于变量nx和ny,这当然可以很容易地推广.
现在是Compile
部分.这是一段丑陋的代码,由上面和编译组成,适合于变量y大小.我比ruebenko的代码更喜欢我的代码.
ClearAll[hessianCompiled];
Block[{z1, z2, z3},
hessianCompiled[yd_] :=
(hessian[
Table[ToExpression["y" <> ToString[i] <> "_"], {i, yd}],
Table[ToExpression["xr" <> ToString[i]<>"c"<>ToString[j] <>"_"],{i,yd},{j,3}],
{z1_, z2_, z3_}
] =
D[
pLike[
Table[ToExpression["y" <> ToString[i]], {i, yd}],
Table[ToExpression["xr" <> ToString[i] <> "c" <> ToString[j]], {i,yd},{j,3}],
{z1, z2, z3}
], {{z1, z2, z3}, 2}
];
Compile[{{y, _Real, 1}, {x, _Real, 2}, {z, _Real, 1}},
hessian[Table[y[[i]], {i, yd}], Table[x[[i, j]], {i, yd}, {j, 3}],
Table[z[[i]], {i, 3}]]]// Evaluate] // Quiet
)
]
hessianCompiled[500][y, xmat, beta] // Timing
{1.497, {{-90.19295669, -15.80180276, 6.448357845},
{-15.80180276, -80.41058154, -26.33982586},
{6.448357845, -26.33982586, -72.92978931}}}
ruebenko's version (including my edits):
(cf = mkCHessian[500, 3]; cf[y, xmat, beta]) // Timing
{1.029, {{-90.19295669, -15.80180276, 6.448357845},
{-15.80180276, -80.41058154, -26.33982586},
{6.448357845, -26.33982586, -72.92978931}}}
Run Code Online (Sandbox Code Playgroud)
请注意,两个测试都包括编译时间.单独运行计算:
h = hessianCompiled[500];
Do[h[y, xmat, beta], {100}]; // Timing
Do[cf[y, xmat, beta], {100}]; // Timing
(* timing for 100 hessians:
==> {0.063, Null}
==> {0.062, Null}
*)
Run Code Online (Sandbox Code Playgroud)