Fra*_*sco 36 aggregate r dataframe
如何为id
以下数据框中的每个唯一选择第一行和最后一行?
tmp <- structure(list(id = c(15L, 15L, 15L, 15L, 21L, 21L, 22L, 22L,
22L, 23L, 23L, 23L, 24L, 24L, 24L, 24L), d = c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), gr = c(2L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L), mm = c(3.4,
4.9, 4.4, 5.5, 4, 3.8, 4, 4.9, 4.6, 2.7, 4, 3, 3, 2, 4, 2), area = c(1L,
2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 3L)), .Names = c("id",
"d", "gr", "mm", "area"), class = "data.frame", row.names = c(NA,
-16L))
tmp
#> id d gr mm area
#> 1 15 1 2 3.4 1
#> 2 15 1 1 4.9 2
#> 3 15 1 1 4.4 1
#> 4 15 1 1 5.5 2
#> 5 21 1 1 4.0 2
#> 6 21 1 2 3.8 2
#> 7 22 1 1 4.0 2
#> 8 22 1 1 4.9 2
#> 9 22 1 2 4.6 2
#> 10 23 1 1 2.7 2
#> 11 23 1 1 4.0 2
#> 12 23 1 2 3.0 2
#> 13 24 1 1 3.0 2
#> 14 24 1 1 2.0 3
#> 15 24 1 1 4.0 2
#> 16 24 1 2 2.0 3
Run Code Online (Sandbox Code Playgroud)
Mat*_*wle 90
快速而简短的data.table
解决方案:
tmp[, .SD[c(1,.N)], by=id]
Run Code Online (Sandbox Code Playgroud)
其中.SD
代表(D)ata的每个(S)ubset,.N
是每组中的行数,并且tmp
是a data.table
; 例如fread()
,默认提供或转换data.frame
使用setDT()
.
请注意,如果一个组只包含一行,那么该行将在输出中出现两次,因为该行既是该组的第一行又是最后一行.为了避免在这种情况下重复,感谢@Thell:
tmp[, .SD[unique(c(1,.N))], by=id]
Run Code Online (Sandbox Code Playgroud)
或者,以下内容使.N==1
特殊情况的逻辑显式:
tmp[, if (.N==1) .SD else .SD[c(1,.N)], by=id]
Run Code Online (Sandbox Code Playgroud)
你不需要.SD[1]
在第一部分if
在这种情况下,因为.N
是1
这样.SD
,必须反正是只有一行.
如果你愿意,你可以j
在{}
里面包装并拥有整页代码{}
.只是,只要最后一个表达式内{}
返回一个list
-等,以被堆叠的物体(如一个普通的list
,data.table
或data.frame
).
tmp[, { ...; if (.N==1) .SD else .SD[c(1,.N)] } , by=id]
Run Code Online (Sandbox Code Playgroud)
rcs*_*rcs 29
一个plyr解决方案(tmp
是你的数据框):
library("plyr")
ddply(tmp, .(id), function(x) x[c(1, nrow(x)), ])
# id d gr mm area
# 1 15 1 2 3.4 1
# 2 15 1 1 5.5 2
# 3 21 1 1 4.0 2
# 4 21 1 2 3.8 2
# 5 22 1 1 4.0 2
# 6 22 1 2 4.6 2
# 7 23 1 1 2.7 2
# 8 23 1 2 3.0 2
# 9 24 1 1 3.0 2
# 10 24 1 2 2.0 3
Run Code Online (Sandbox Code Playgroud)
library("dplyr")
tmp %>%
group_by(id) %>%
slice(c(1, n())) %>%
ungroup()
# # A tibble: 10 × 5
# id d gr mm area
# <int> <int> <int> <dbl> <int>
# 1 15 1 2 3.4 1
# 2 15 1 1 5.5 2
# 3 21 1 1 4.0 2
# 4 21 1 2 3.8 2
# 5 22 1 1 4.0 2
# 6 22 1 2 4.6 2
# 7 23 1 1 2.7 2
# 8 23 1 2 3.0 2
# 9 24 1 1 3.0 2
# 10 24 1 2 2.0 3
Run Code Online (Sandbox Code Playgroud)
这是base中的解决方案R
。如果有多个相同的组,则id
此代码返回每个单独组的第一行和最后一行。
编辑:2017年1月12日
该解决方案可能比下面的其他答案更直观:
lmy.df = read.table(text = '
id d gr mm area
15 1 2 3.40 1
15 1 1 4.90 2
15 1 1 4.40 1
15 1 1 5.50 2
21 1 1 4.00 2
21 1 2 3.80 2
22 1 1 4.00 2
23 1 1 2.70 2
23 1 1 4.00 2
23 1 2 3.00 2
24 1 1 3.00 2
24 1 1 2.00 3
24 1 1 4.00 2
24 1 2 2.00 3
', header = TRUE)
head <- aggregate(lmy.df, by=list(lmy.df$id), FUN = function(x) { first = head(x,1) } )
tail <- aggregate(lmy.df, by=list(lmy.df$id), FUN = function(x) { last = tail(x,1) } )
head$order = 'first'
tail$order = 'last'
my.output <- rbind(head, tail)
my.output
# Group.1 id d gr mm area order
#1 15 15 1 2 3.4 1 first
#2 21 21 1 1 4.0 2 first
#3 22 22 1 1 4.0 2 first
#4 23 23 1 1 2.7 2 first
#5 24 24 1 1 3.0 2 first
#6 15 15 1 1 5.5 2 last
#7 21 21 1 2 3.8 2 last
#8 22 22 1 1 4.0 2 last
#9 23 23 1 2 3.0 2 last
#10 24 24 1 2 2.0 3 last
Run Code Online (Sandbox Code Playgroud)
编辑:2016年6月18日
自发布我的原始答案以来,我已经知道使用它lapply
比更好apply
。这是因为apply
如果每个组具有相同的行数,则不起作用。请参阅此处:按组编号行时出错
lmy.df = read.table(text = '
id d gr mm area
15 1 2 3.40 1
15 1 1 4.90 2
15 1 1 4.40 1
15 1 1 5.50 2
21 1 1 4.00 2
21 1 2 3.80 2
22 1 1 4.00 2
23 1 1 2.70 2
23 1 1 4.00 2
23 1 2 3.00 2
24 1 1 3.00 2
24 1 1 2.00 3
24 1 1 4.00 2
24 1 2 2.00 3
', header = TRUE)
lmy.seq <- rle(lmy.df$id)$lengths
lmy.df$first <- unlist(lapply(lmy.seq, function(x) seq(1,x)))
lmy.df$last <- unlist(lapply(lmy.seq, function(x) seq(x,1,-1)))
lmy.df
lmy.df2 <- lmy.df[lmy.df$first==1 | lmy.df$last == 1,]
lmy.df2
# id d gr mm area first last
#1 15 1 2 3.4 1 1 4
#4 15 1 1 5.5 2 4 1
#5 21 1 1 4.0 2 1 2
#6 21 1 2 3.8 2 2 1
#7 22 1 1 4.0 2 1 1
#8 23 1 1 2.7 2 1 3
#10 23 1 2 3.0 2 3 1
#11 24 1 1 3.0 2 1 4
#14 24 1 2 2.0 3 4 1
Run Code Online (Sandbox Code Playgroud)
这是一个示例,其中每个组都有两行:
lmy.df = read.table(text = '
id d gr mm area
15 1 2 3.40 1
15 1 1 4.90 2
21 1 1 4.00 2
21 1 2 3.80 2
22 1 1 4.00 2
22 1 1 6.00 2
23 1 1 2.70 2
23 1 2 3.00 2
24 1 1 3.00 2
24 1 2 2.00 3
', header = TRUE)
lmy.seq <- rle(lmy.df$id)$lengths
lmy.df$first <- unlist(lapply(lmy.seq, function(x) seq(1,x)))
lmy.df$last <- unlist(lapply(lmy.seq, function(x) seq(x,1,-1)))
lmy.df
lmy.df2 <- lmy.df[lmy.df$first==1 | lmy.df$last == 1,]
lmy.df2
# id d gr mm area first last
#1 15 1 2 3.4 1 1 2
#2 15 1 1 4.9 2 2 1
#3 21 1 1 4.0 2 1 2
#4 21 1 2 3.8 2 2 1
#5 22 1 1 4.0 2 1 2
#6 22 1 1 6.0 2 2 1
#7 23 1 1 2.7 2 1 2
#8 23 1 2 3.0 2 2 1
#9 24 1 1 3.0 2 1 2
#10 24 1 2 2.0 3 2 1
Run Code Online (Sandbox Code Playgroud)
原始答案:
my.seq <- data.frame(rle(my.df$id)$lengths)
my.df$first <- unlist(apply(my.seq, 1, function(x) seq(1,x)))
my.df$last <- unlist(apply(my.seq, 1, function(x) seq(x,1,-1)))
my.df2 <- my.df[my.df$first==1 | my.df$last == 1,]
my.df2
id d gr mm area first last
1 15 1 2 3.4 1 1 4
4 15 1 1 5.5 2 4 1
5 21 1 1 4.0 2 1 2
6 21 1 2 3.8 2 2 1
7 22 1 1 4.0 2 1 3
9 22 1 2 4.6 2 3 1
10 23 1 1 2.7 2 1 3
12 23 1 2 3.0 2 3 1
13 24 1 1 3.0 2 1 4
16 24 1 2 2.0 3 4 1
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
35057 次 |
最近记录: |