从地理坐标到地磁坐标的转换

use*_*288 5 java coordinates

我正在尝试在地理坐标和地磁坐标之间进行转换。我找到了以下 Prolog 脚本,但我对它的理解不够,无法自己转换。目标语言是 Java,但任何可以理解的语言都可以(C、Python、VB 等等)。

http://idlastro.gsfc.nasa.gov/ftp/pro/astro/geo2mag.pro

如果有人可以帮助转换这个脚本或解释它到底在做什么(那些数组操作让我感到困惑),我真的很感激。

谢谢

E. *_*las 5

根据应用的不同,高度可能是此坐标转换中的一个重要变量,因为地磁坐标是地球偶极磁场的映射。

在 Python 中,您可以使用 SpacePy ( http://sourceforge.net/projects/spacepy/ )轻松地将地理坐标转换为地磁(反之亦然)。

由于您正在寻找转换为 Java 的源代码,SpacePy 正在实施 Fortran 国际辐射带环境建模 (IRBEM) 库,其源代码可用 ( http://irbem.svn.sourceforge.net/viewvc/irbem /web/index.html )

在 Python 中,以防其他人正在寻找快速解决方案:

import spacepy.coordinates as coord
from spacepy.time import Ticktock
import numpy as np
def geotomag(alt,lat,lon):
    #call with altitude in kilometers and lat/lon in degrees 
    Re=6371.0 #mean Earth radius in kilometers
    #setup the geographic coordinate object with altitude in earth radii 
    cvals = coord.Coords([np.float(alt+Re)/Re, np.float(lat), np.float(lon)], 'GEO', 'sph',['Re','deg','deg'])
    #set time epoch for coordinates:
    cvals.ticks=Ticktock(['2012-01-01T12:00:00'], 'ISO')
    #return the magnetic coords in the same units as the geographic:
    return cvals.convert('MAG','sph')
Run Code Online (Sandbox Code Playgroud)


yos*_*bai 3

我将其写入python代码,并尝试通过此网站http://wdc.kugi.kyoto-u.ac.jp/igrf/gggm/index.html进行验证。我找到

  1. 磁极是 1995 年的磁极。
  2. 即使我将上面的计算设置为使用 1995 年的值,我也没有得到正确的匹配。

我使用的是日本京都的值(35N,135.45W)。计算出的网页为(25.18,-155.80)。我得到(25.33580652,-155.82724011)。所以我不完全确定这是否真的有用......

import numpy as np

from numpy import pi, cos, sin, arctan2, sqrt, dot
def geo2mag(incoord):
    """geographic coordinate to magnetic coordinate:

        incoord is numpy array of shape (2,*)
        array([[glat0,glat1,glat2,...],
            [glon0,glon1,glon2,...])
        where glat, glon are geographic latitude and longitude
        (or if you have only one point it is [[glat,glon]])

        returns
        array([mlat0,mlat1,...],
            [mlon0,mlon1,...]])
        """

    # SOME 'constants'...
    lon = 288.59 # or 71.41W
    lat = 79.3
    r = 1.0

    # convert first to radians
    lon, lat = [x*pi/180 for x in lon,lat]

    glat = incoord[0] * pi / 180.0
    glon = incoord[1] * pi / 180.0
    galt = glat * 0. + r

    coord = np.vstack([glat,glon,galt])

    # convert to rectangular coordinates
    x = coord[2]*cos(coord[0])*cos(coord[1])
    y = coord[2]*cos(coord[0])*sin(coord[1])
    z = coord[2]*sin(coord[0])
    xyz = np.vstack((x,y,z))

    # computer 1st rotation matrix:
    geo2maglon = np.zeros((3,3), dtype='float64')
    geo2maglon[0,0] = cos(lon)
    geo2maglon[0,1] = sin(lon)
    geo2maglon[1,0] = -sin(lon)
    geo2maglon[1,1] = cos(lon)
    geo2maglon[2,2] = 1.
    out = dot(geo2maglon , xyz)

    tomaglat = np.zeros((3,3), dtype='float64')
    tomaglat[0,0] = cos(.5*pi-lat)
    tomaglat[0,2] = -sin(.5*pi-lat)
    tomaglat[2,0] = sin(.5*pi-lat)
    tomaglat[2,2] = cos(.5*pi-lat)
    tomaglat[1,1] = 1.
    out = dot(tomaglat , out)

    mlat = arctan2(out[2], 
            sqrt(out[0]*out[0] + out[1]*out[1]))
    mlat = mlat * 180 / pi
    mlon = arctan2(out[1], out[0])
    mlon = mlon * 180 / pi

    outcoord = np.vstack((mlat, mlon))
    return outcoord

if __name__ == '__main__':
    mag =  geo2mag(np.array([[79.3,288.59]]).T).T
    print mag  # should be [90,0]

    mag =  geo2mag(np.array([[90,0]]).T).T
    print mag  # should be [79.3,*]

    mag =  geo2mag(np.array([
        [79.3,288.59],
        [90,0]
        ]).T).T

    print mag  # should be [ [90,0]. [79.3,*] ]

    # kyoto, japan
    mag =  geo2mag(np.array([[35.,135.45]]).T).T
    print mag  # should be [25.18, -155.80], according to 
               # this site using value for 1995
               # http://wdc.kugi.kyoto-u.ac.jp/igrf/gggm/index.html
Run Code Online (Sandbox Code Playgroud)