我想计算所需的所有顶点并用线连接它们,所以我最终想出了一个球体.有多少种方法可以做到?并且顶点之间的线条也是直的; 我怎么能让它们"弯曲"我知道我可以使用glutWireSphere(),但我对实际计算顶点感兴趣.我想到的一种方法是将所有顶点手动放在一个数组中,但我想这不是它的完成方式.
dat*_*olf 16
复制和粘贴我最初在使用Visual C++在Opengl中创建3D球体时编写的代码
class SolidSphere
{
protected
std::vector<GLfloat> vertices;
std::vector<GLfloat> normals;
std::vector<GLfloat> texcoords;
std::vector<GLushort> indices;
public:
void SolidSphere(float radius, unsigned int rings, unsigned int sectors)
{
float const R = 1./(float)(rings-1);
float const S = 1./(float)(sectors-1);
int r, s;
sphere_vertices.resize(rings * sectors * 3);
sphere_normals.resize(rings * sectors * 3);
sphere_texcoords.resize(rings * sectors * 2);
std::vector<GLfloat>::iterator v = sphere_vertices.begin();
std::vector<GLfloat>::iterator n = sphere_normals.begin();
std::vector<GLfloat>::iterator t = sphere_texcoords.begin();
for(r = 0; r < rings; r++) for(s = 0; s < sectors; s++) {
float const y = sin( -M_PI_2 + M_PI * r * R );
float const x = cos(2*M_PI * s * S) * sin( M_PI * r * R );
float const z = sin(2*M_PI * s * S) * sin( M_PI * r * R );
*t++ = s*S;
*t++ = r*R;
*v++ = x * radius;
*v++ = y * radius;
*v++ = z * radius;
*n++ = x;
*n++ = y;
*n++ = z;
}
sphere_indices.resize(rings * sectors * 4);
std:vector<GLushort>::iterator i = sphere_indices.begin();
for(r = 0; r < rings; r++) for(s = 0; s < sectors; s++) {
*i++ = r * sectors + s;
*i++ = r * sectors + (s+1);
*i++ = (r+1) * sectors + (s+1);
*i++ = (r+1) * sectors + s;
}
}
void draw(GLfloat x, GLfloat y, GLfloat z)
{
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslatef(x,y,z);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, &sphere_vertices[0]);
glNormalPointer(GL_FLOAT, 0, &sphere_normals[0]);
glTexCoordPointer(2, GL_FLOAT, 0, &sphere_texcoords[0]);
glDrawElements(GL_QUADS, sphere_indices.size()/4, GL_UNSIGNED_SHORT, sphere_indices);
glPopMatrix();
}
}
Run Code Online (Sandbox Code Playgroud)
怎么能让它们"弯曲"
你不能.所有OpenGL基元都是"仿射",即平面或直线.通过绘制具有足够分辨率的短直线部分来模拟曲率.