Ian*_*ore 95 python shared numpy multiprocessing
我想在共享内存中使用numpy数组与多处理模块一起使用.困难是使用它像一个numpy数组,而不仅仅是一个ctypes数组.
from multiprocessing import Process, Array
import scipy
def f(a):
a[0] = -a[0]
if __name__ == '__main__':
# Create the array
N = int(10)
unshared_arr = scipy.rand(N)
arr = Array('d', unshared_arr)
print "Originally, the first two elements of arr = %s"%(arr[:2])
# Create, start, and finish the child processes
p = Process(target=f, args=(arr,))
p.start()
p.join()
# Printing out the changed values
print "Now, the first two elements of arr = %s"%arr[:2]
Run Code Online (Sandbox Code Playgroud)
这会产生如下输出:
Originally, the first two elements of arr = [0.3518653236697369, 0.517794725524976]
Now, the first two elements of arr = [-0.3518653236697369, 0.517794725524976]
Run Code Online (Sandbox Code Playgroud)
可以以ctypes方式访问数组,例如arr[i]有意义.但是,它不是一个numpy数组,我不能执行诸如-1*arr或之类的操作arr.sum().我想解决方案是将ctypes数组转换为numpy数组.然而(除了无法完成这项工作),我不相信它会被分享.
对于必须存在的常见问题,似乎会有一个标准的解决方案.
jfs*_*jfs 72
添加到@ unutbu(不再可用)和@Henry Gomersall的答案.您可以shared_arr.get_lock()在需要时使用同步访问:
shared_arr = mp.Array(ctypes.c_double, N)
# ...
def f(i): # could be anything numpy accepts as an index such another numpy array
with shared_arr.get_lock(): # synchronize access
arr = np.frombuffer(shared_arr.get_obj()) # no data copying
arr[i] = -arr[i]
Run Code Online (Sandbox Code Playgroud)
import ctypes
import logging
import multiprocessing as mp
from contextlib import closing
import numpy as np
info = mp.get_logger().info
def main():
logger = mp.log_to_stderr()
logger.setLevel(logging.INFO)
# create shared array
N, M = 100, 11
shared_arr = mp.Array(ctypes.c_double, N)
arr = tonumpyarray(shared_arr)
# fill with random values
arr[:] = np.random.uniform(size=N)
arr_orig = arr.copy()
# write to arr from different processes
with closing(mp.Pool(initializer=init, initargs=(shared_arr,))) as p:
# many processes access the same slice
stop_f = N // 10
p.map_async(f, [slice(stop_f)]*M)
# many processes access different slices of the same array
assert M % 2 # odd
step = N // 10
p.map_async(g, [slice(i, i + step) for i in range(stop_f, N, step)])
p.join()
assert np.allclose(((-1)**M)*tonumpyarray(shared_arr), arr_orig)
def init(shared_arr_):
global shared_arr
shared_arr = shared_arr_ # must be inherited, not passed as an argument
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj())
def f(i):
"""synchronized."""
with shared_arr.get_lock(): # synchronize access
g(i)
def g(i):
"""no synchronization."""
info("start %s" % (i,))
arr = tonumpyarray(shared_arr)
arr[i] = -1 * arr[i]
info("end %s" % (i,))
if __name__ == '__main__':
mp.freeze_support()
main()
Run Code Online (Sandbox Code Playgroud)
如果您不需要同步访问或创建自己的锁,则mp.Array()不需要.你可以mp.sharedctypes.RawArray在这种情况下使用.
Hen*_*all 18
该Array对象具有get_obj()与之关联的方法,该方法返回呈现缓冲区接口的ctypes数组.我认为以下应该有效......
from multiprocessing import Process, Array
import scipy
import numpy
def f(a):
a[0] = -a[0]
if __name__ == '__main__':
# Create the array
N = int(10)
unshared_arr = scipy.rand(N)
a = Array('d', unshared_arr)
print "Originally, the first two elements of arr = %s"%(a[:2])
# Create, start, and finish the child process
p = Process(target=f, args=(a,))
p.start()
p.join()
# Print out the changed values
print "Now, the first two elements of arr = %s"%a[:2]
b = numpy.frombuffer(a.get_obj())
b[0] = 10.0
print a[0]
Run Code Online (Sandbox Code Playgroud)
运行时,这会打印出现在a为10.0 的第一个元素,显示a并且b只是同一个内存中的两个视图.
为了确保它仍然是多处理器安全的,我相信你将不得不使用对象上存在的acquire和release方法,以及它内置的锁以确保它的所有安全访问(尽管我不是多处理器模块).Arraya
Eel*_*aak 14
虽然已经给出的答案很好,但只要满足两个条件,就可以更容易地解决这个问题:
在这种情况下,您不需要明确地使变量共享,因为子进程将使用fork创建.分叉子项自动共享父项的内存空间.在Python多处理的上下文中,这意味着它共享所有模块级变量; 请注意,这不适用于您明确传递给子进程或您在一个multiprocessing.Pool左右调用的函数的参数.
一个简单的例子:
import multiprocessing
import numpy as np
# will hold the (implicitly mem-shared) data
data_array = None
# child worker function
def job_handler(num):
# built-in id() returns unique memory ID of a variable
return id(data_array), np.sum(data_array)
def launch_jobs(data, num_jobs=5, num_worker=4):
global data_array
data_array = data
pool = multiprocessing.Pool(num_worker)
return pool.map(job_handler, range(num_jobs))
# create some random data and execute the child jobs
mem_ids, sumvals = zip(*launch_jobs(np.random.rand(10)))
# this will print 'True' on POSIX OS, since the data was shared
print(np.all(np.asarray(mem_ids) == id(data_array)))
Run Code Online (Sandbox Code Playgroud)
小智 10
我写了一个小的python模块,它使用POSIX共享内存在python解释器之间共享numpy数组.也许你会发现它很方便.
https://pypi.python.org/pypi/SharedArray
以下是它的工作原理:
import numpy as np
import SharedArray as sa
# Create an array in shared memory
a = sa.create("test1", 10)
# Attach it as a different array. This can be done from another
# python interpreter as long as it runs on the same computer.
b = sa.attach("test1")
# See how they are actually sharing the same memory block
a[0] = 42
print(b[0])
# Destroying a does not affect b.
del a
print(b[0])
# See how "test1" is still present in shared memory even though we
# destroyed the array a.
sa.list()
# Now destroy the array "test1" from memory.
sa.delete("test1")
# The array b is not affected, but once you destroy it then the
# data are lost.
print(b[0])
Run Code Online (Sandbox Code Playgroud)
使用 Python3.8+,您可以使用multiprocessing.shared_memory标准库模块创建由共享内存支持的 numpy 数组。该共享内存可以被多个进程访问。这是一个例子:
# np_sharing.py
from multiprocessing import Process
from multiprocessing.managers import SharedMemoryManager
from multiprocessing.shared_memory import SharedMemory
from typing import Tuple
import numpy as np
def create_np_array_from_shared_mem(
shared_mem: SharedMemory, shared_data_dtype: np.dtype, shared_data_shape: Tuple[int, ...]
) -> np.ndarray:
arr = np.frombuffer(shared_mem.buf, dtype=shared_data_dtype)
arr = arr.reshape(shared_data_shape)
return arr
def child_process(
shared_mem: SharedMemory, shared_data_dtype: np.dtype, shared_data_shape: Tuple[int, ...]
):
"""Logic to be executed by the child process"""
arr = create_np_array_from_shared_mem(shared_mem, shared_data_dtype, shared_data_shape)
arr[0, 0] = -arr[0, 0] # modify the array backed by shared memory
def main():
"""Logic to be executed by the parent process"""
# Data to be shared:
data_to_share = np.random.rand(10, 10)
SHARED_DATA_DTYPE = data_to_share.dtype
SHARED_DATA_SHAPE = data_to_share.shape
SHARED_DATA_NBYTES = data_to_share.nbytes
with SharedMemoryManager() as smm:
shared_mem = smm.SharedMemory(size=SHARED_DATA_NBYTES)
arr = create_np_array_from_shared_mem(shared_mem, SHARED_DATA_DTYPE, SHARED_DATA_SHAPE)
arr[:] = data_to_share # load the data into shared memory
print(f"The [0,0] element of arr is {arr[0,0]}") # before
# Run child process:
p = Process(target=child_process, args=(shared_mem, SHARED_DATA_DTYPE, SHARED_DATA_SHAPE))
p.start()
p.join()
print(f"The [0,0] element of arr is {arr[0,0]}") # after
del arr # delete np array so the shared memory can be deallocated
if __name__ == "__main__":
main()
Run Code Online (Sandbox Code Playgroud)
运行脚本:
$ python3.10 np_sharing.py
The [0,0] element of arr is 0.262091705529628
The [0,0] element of arr is -0.262091705529628
Run Code Online (Sandbox Code Playgroud)
由于不同进程中的数组共享相同的底层内存缓冲区,因此适用竞争条件的标准警告。
您可以使用该sharedmem模块:https://bitbucket.org/cleemesser/numpy-sharedmem
这是你的原始代码,这次使用的行为类似于NumPy数组的共享内存(注意调用NumPy sum()函数的附加最后一个语句):
from multiprocessing import Process
import sharedmem
import scipy
def f(a):
a[0] = -a[0]
if __name__ == '__main__':
# Create the array
N = int(10)
unshared_arr = scipy.rand(N)
arr = sharedmem.empty(N)
arr[:] = unshared_arr.copy()
print "Originally, the first two elements of arr = %s"%(arr[:2])
# Create, start, and finish the child process
p = Process(target=f, args=(arr,))
p.start()
p.join()
# Print out the changed values
print "Now, the first two elements of arr = %s"%arr[:2]
# Perform some NumPy operation
print arr.sum()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
57194 次 |
| 最近记录: |