Dav*_*vy8 32 python optimization python-2.x levenshtein-distance word-diff
分析显示这是我写的一个小字游戏的代码中最慢的部分:
def distance(word1, word2):
difference = 0
for i in range(len(word1)):
if word1[i] != word2[i]:
difference += 1
return difference
def getchildren(word, wordlist):
return [ w for w in wordlist if distance(word, w) == 1 ]
Run Code Online (Sandbox Code Playgroud)
笔记:
distance()被调用超过500万次,其中大部分是来自getchildren,它应该让wordlist中的所有单词与word1个字母完全不同.word所以它保证word1并word2具有相同数量的字符.结果:
谢谢大家,通过不同建议的组合,我现在运行程序的速度提高了两倍(除了我自己在询问之前做的优化之外,所以从初始实现开始,速度提高了4倍)
我测试了2组输入,我称之为A和B.
优化1:迭代word1,2 ...的索引
for i in range(len(word1)):
if word1[i] != word2[i]:
difference += 1
return difference
Run Code Online (Sandbox Code Playgroud)
使用迭代迭代字母对zip(word1, word2)
for x,y in zip (word1, word2):
if x != y:
difference += 1
return difference
Run Code Online (Sandbox Code Playgroud)
输入A的执行时间从11.92到9.18,输入B的执行时间为79.30到74.59
优化2:除了距离方法(我还需要其他A*启发式方法)之外,还为逐个方法添加了一个单独的方法
def is_neighbors(word1,word2):
different = False
for c1,c2 in zip(word1,word2):
if c1 != c2:
if different:
return False
different = True
return different
Run Code Online (Sandbox Code Playgroud)
输入A的执行时间从9.18到8.83,输入B的执行时间为74.59到70.14
优化3:这里的大赢家是使用izip而不是zip
输入A的执行时间从8.83到5.02,输入B的执行时间为70.14到41.69
我可能会用更低级别的语言写出来做得更好,但我现在很高兴.感谢大家!
再次编辑:更多结果使用Mark的方法检查第一个字母不匹配的情况从5.02 - > 3.59和41.69 - > 29.82
在此基础上,并结合izip而不是range,我最终得到了这个:
def is_neighbors(word1,word2):
if word1[0] != word2[0]:
return word1[1:] == word2[1:]
different = False
for x,y in izip(word1[1:],word2[1:]):
if x != y:
if different:
return False
different = True
return different
Run Code Online (Sandbox Code Playgroud)
压缩了一点点,使时间从3.59 - > 3.38和29.82 - > 27.88下降
更多结果!
尝试Sumudu的建议,我生成一个列表,其中包含从"word"中删除1个字母的所有字符串,然后检查哪些字符串在wordlist中,而不是is_neighbor函数,我最终得到了这个:
def one_letter_off_strings(word):
import string
dif_list = []
for i in xrange(len(word)):
dif_list.extend((word[:i] + l + word[i+1:] for l in string.ascii_lowercase if l != word[i]))
return dif_list
def getchildren(word, wordlist):
oneoff = one_letter_off_strings(word)
return ( w for w in oneoff if w in wordlist )
Run Code Online (Sandbox Code Playgroud)
最终变慢(3.38 - > 3.74和27.88 - > 34.40),但似乎很有希望.起初我认为我需要优化的部分是"one_letter_off_strings",但是剖析显示其他情况,而事实上缓慢部分是
( w for w in oneoff if w in wordlist )
Run Code Online (Sandbox Code Playgroud)
我想如果我切换"oneoff"和"wordlist"会有什么不同,并且当它碰到我时我正在寻找2个列表的交集时,做了比较.我用字母上的set-intersection替换它:
return set(oneoff) & set(wordlist)
Run Code Online (Sandbox Code Playgroud)
巴姆!3.74 - > 0.23和34.40 - > 2.25
这真是令人惊讶,与我最初的天真实现的总速度差异:23.79 - > 0.23和180.07 - > 2.25,因此比原始实现快大约80到100倍.
如果有人感兴趣,我发了博客文章描述程序并描述所做的优化,包括这里没有提到的优化(因为它在代码的不同部分).
大辩论:
好吧,我和Unknown正在进行一场大辩论,你可以在他的回答评论中看到.他声称使用原始方法(使用is_neighbor而不是使用集合)会更快,如果它被移植到C.我尝试了2个小时来获得我编写的C模块,并且在尝试之后可以链接而没有太大成功按照这个和这个例子,看起来这个过程在Windows中有点不同?我不知道,但我放弃了.无论如何,这是程序的完整代码,文本文件来自12dict单词列表,使用"2 + 2lemma.txt"文件.对不起,如果代码有点混乱,这只是我一起攻击的东西.此外,我忘了从单词列表中删除逗号,这样实际上是一个错误,你可以为了相同的比较而留下它,或者通过在cleanentries中的chars列表中添加一个逗号来修复它.
from itertools import izip
def unique(seq):
seen = {}
result = []
for item in seq:
if item in seen:
continue
seen[item] = 1
result.append(item)
return result
def cleanentries(li):
pass
return unique( [w.strip('[]') for w in li if w != "->"] )
def distance(word1, word2):
difference = 0
for x,y in izip (word1, word2):
if x != y:
difference += 1
return difference
def is_neighbors(word1,word2):
if word1[0] != word2[0]:
return word1[1:] == word2[1:]
different = False
for x,y in izip(word1[1:],word2[1:]):
if x != y:
if different:
return False
different = True
return different
def one_letter_off_strings(word):
import string
dif_list = []
for i in xrange(len(word)):
dif_list.extend((word[:i] + l + word[i+1:] for l in string.ascii_lowercase if l != word[i]))
return dif_list
def getchildren(word, wordlist):
oneoff = one_letter_off_strings(word)
return set(oneoff) & set(wordlist)
def AStar(start, goal, wordlist):
import Queue
closedset = []
openset = [start]
pqueue = Queue.PriorityQueue(0)
g_score = {start:0} #Distance from start along optimal path.
h_score = {start:distance(start, goal)}
f_score = {start:h_score[start]}
pqueue.put((f_score[start], start))
parent_dict = {}
while len(openset) > 0:
x = pqueue.get(False)[1]
if x == goal:
return reconstruct_path(parent_dict,goal)
openset.remove(x)
closedset.append(x)
sortedOpen = [(f_score[w], w, g_score[w], h_score[w]) for w in openset]
sortedOpen.sort()
for y in getchildren(x, wordlist):
if y in closedset:
continue
temp_g_score = g_score[x] + 1
temp_is_better = False
appended = False
if (not y in openset):
openset.append(y)
appended = True
h_score[y] = distance(y, goal)
temp_is_better = True
elif temp_g_score < g_score[y] :
temp_is_better = True
else :
pass
if temp_is_better:
parent_dict[y] = x
g_score[y] = temp_g_score
f_score[y] = g_score[y] + h_score[y]
if appended :
pqueue.put((f_score[y], y))
return None
def reconstruct_path(parent_dict,node):
if node in parent_dict.keys():
p = reconstruct_path(parent_dict,parent_dict[node])
p.append(node)
return p
else:
return []
wordfile = open("2+2lemma.txt")
wordlist = cleanentries(wordfile.read().split())
wordfile.close()
words = []
while True:
userentry = raw_input("Hello, enter the 2 words to play with separated by a space:\n ")
words = [w.lower() for w in userentry.split()]
if(len(words) == 2 and len(words[0]) == len(words[1])):
break
print "You selected %s and %s as your words" % (words[0], words[1])
wordlist = [ w for w in wordlist if len(words[0]) == len(w)]
answer = AStar(words[0], words[1], wordlist)
if answer != None:
print "Minimum number of steps is %s" % (len(answer))
reply = raw_input("Would you like the answer(y/n)? ")
if(reply.lower() == "y"):
answer.insert(0, words[0])
print "\n".join(answer)
else:
print "Good luck!"
else:
print "Sorry, there's no answer to yours"
reply = raw_input("Press enter to exit")
Run Code Online (Sandbox Code Playgroud)
我离开了is_neighbors方法,即使它没有被使用.这是建议移植到C的方法.要使用它,只需将getchildren替换为:
def getchildren(word, wordlist):
return ( w for w in wordlist if is_neighbors(word, w))
Run Code Online (Sandbox Code Playgroud)
至于让它作为一个C模块工作,我没有那么远,但这就是我提出的:
#include "Python.h"
static PyObject *
py_is_neighbor(PyObject *self, Pyobject *args)
{
int length;
const char *word1, *word2;
if (!PyArg_ParseTuple(args, "ss", &word1, &word2, &length))
return NULL;
int i;
int different = 0;
for (i =0; i < length; i++)
{
if (*(word1 + i) != *(word2 + i))
{
if (different)
{
return Py_BuildValue("i", different);
}
different = 1;
}
}
return Py_BuildValue("i", different);
}
PyMethodDef methods[] = {
{"isneighbor", py_is_neighbor, METH_VARARGS, "Returns whether words are neighbors"},
{NULL, NULL, 0, NULL}
};
PyMODINIT_FUNC
initIsNeighbor(void)
{
Py_InitModule("isneighbor", methods);
}
Run Code Online (Sandbox Code Playgroud)
我用以下方式描述了这个:
python -m cProfile"Wordgame.py"
记录的时间是AStar方法调用的总时间.快速输入集是"诗歌诗人",长输入集是"诗人诗歌".不同机器之间的时间显然会有所不同,所以如果有人最终尝试这样做,那就给出程序的结果比较,以及C模块.
Sum*_*ndo 24
如果你的单词列表很长,从'word'生成所有可能的1个字母差异可能更有效率,那么检查列表中的哪些?我不知道任何Python,但应该有一个合适的wordlist数据结构,允许进行日志时间查找.
我建议这样做,因为如果你的单词是合理的长度(~10个字母),那么你只会寻找250个潜在单词,如果你的单词列表大于几百个单词,这可能会更快.
Mar*_*som 10
distance当你真正关心距离= 1时,你的功能是计算总距离.大多数情况下你会知道它在几个字符内> 1,所以你可以提前返回并节省大量时间.
除此之外,可能有更好的算法,但我想不到它.
编辑:另一个想法.
您可以根据第一个字符是否匹配来制作2个案例.如果不匹配,则单词的其余部分必须完全匹配,您可以一次性测试.否则,与你正在做的事情类似.你甚至可以递归地做,但我认为这不会更快.
def DifferentByOne(word1, word2):
if word1[0] != word2[0]:
return word1[1:] == word2[1:]
same = True
for i in range(1, len(word1)):
if word1[i] != word2[i]:
if same:
same = False
else:
return False
return not same
Run Code Online (Sandbox Code Playgroud)
编辑2:我已经删除了检查以查看字符串是否长度相同,因为你说它是多余的.在我自己的代码和MizardX 提供的is_neighbors函数上运行Ryan的测试,我得到以下结果:
编辑3 :(可能在这里进入社区维基领域,但......)
使用izip而不是zip来尝试最终定义is_neighbors():2.9秒.
这是我的最新版本,仍然是1.1秒:
def DifferentByOne(word1, word2):
if word1[0] != word2[0]:
return word1[1:] == word2[1:]
different = False
for i in range(1, len(word1)):
if word1[i] != word2[i]:
if different:
return False
different = True
return different
Run Code Online (Sandbox Code Playgroud)
from itertools import izip
def is_neighbors(word1,word2):
different = False
for c1,c2 in izip(word1,word2):
if c1 != c2:
if different:
return False
different = True
return different
Run Code Online (Sandbox Code Playgroud)
或者可能是izip代码内容:
def is_neighbors(word1,word2):
different = False
next1 = iter(word1).next
next2 = iter(word2).next
try:
while 1:
if next1() != next2():
if different:
return False
different = True
except StopIteration:
pass
return different
Run Code Online (Sandbox Code Playgroud)
并重写getchildren:
def iterchildren(word, wordlist):
return ( w for w in wordlist if is_neighbors(word, w) )
Run Code Online (Sandbox Code Playgroud)