Ein*_*nar 5 python numpy average list
过去,我曾面临着处理两个配对列表的平均问题,并且我已经成功地使用了那里提供的答案。
然而,对于大型(超过 20,000 个)项目,该过程有点慢,我想知道使用 NumPy 是否会使其更快。
我从两个列表开始,一个是浮点数,一个是字符串:
names = ["a", "b", "b", "c", "d", "e", "e"]
values = [1.2, 4.5, 4.3, 2.0, 5.67, 8.08, 9.01]
Run Code Online (Sandbox Code Playgroud)
我正在尝试计算相同值的平均值,以便在应用后得到:
result_names = ["a", "b", "c", "d", "e"]
result_values = [1.2, 4.4, 2.0, 5.67, 8.54]
Run Code Online (Sandbox Code Playgroud)
我把两个列表作为结果示例,但也有一个(name, value)
元组列表 就足够了:
result = [("a", 1.2), ("b", 4.4), ("d", 5.67), ("e", 8.54)]
Run Code Online (Sandbox Code Playgroud)
使用 NumPy 执行此操作的最佳方法是什么?
使用numpy,您可以自己编写一些东西,或者您可以使用groupby功能(来自matplotlib.mlab的rec_groupby函数,但速度要慢得多。要获得更强大的groupby功能,也许看看pandas),我将它与Michael的答案进行了比较邓恩拿着字典:
import numpy as np
import random
from matplotlib.mlab import rec_groupby
listA = [random.choice("abcdef") for i in range(20000)]
listB = [20 * random.random() for i in range(20000)]
names = np.array(listA)
values = np.array(listB)
def f_dict(listA, listB):
d = {}
for a, b in zip(listA, listB):
d.setdefault(a, []).append(b)
avg = []
for key in d:
avg.append(sum(d[key])/len(d[key]))
return d.keys(), avg
def f_numpy(names, values):
result_names = np.unique(names)
result_values = np.empty(result_names.shape)
for i, name in enumerate(result_names):
result_values[i] = np.mean(values[names == name])
return result_names, result_values
Run Code Online (Sandbox Code Playgroud)
这是三者的结果:
In [2]: f_dict(listA, listB)
Out[2]:
(['a', 'c', 'b', 'e', 'd', 'f'],
[9.9003182717213765,
10.077784850173568,
9.8623915728699636,
9.9790599744319319,
9.8811096512807097,
10.118695410115953])
In [3]: f_numpy(names, values)
Out[3]:
(array(['a', 'b', 'c', 'd', 'e', 'f'],
dtype='|S1'),
array([ 9.90031827, 9.86239157, 10.07778485, 9.88110965,
9.97905997, 10.11869541]))
In [7]: rec_groupby(struct_array, ('names',), (('values', np.mean, 'resvalues'),))
Out[7]:
rec.array([('a', 9.900318271721376), ('b', 9.862391572869964),
('c', 10.077784850173568), ('d', 9.88110965128071),
('e', 9.979059974431932), ('f', 10.118695410115953)],
dtype=[('names', '|S1'), ('resvalues', '<f8')])
Run Code Online (Sandbox Code Playgroud)
看起来 numpy 对于这个测试要快一些(而预定义的 groupby 函数要慢得多):
In [32]: %timeit f_dict(listA, listB)
10 loops, best of 3: 23 ms per loop
In [33]: %timeit f_numpy(names, values)
100 loops, best of 3: 9.78 ms per loop
In [8]: %timeit rec_groupby(struct_array, ('names',), (('values', np.mean, 'values'),))
1 loops, best of 3: 203 ms per loop
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2374 次 |
最近记录: |