如何解释R中SVM的预测结果?

Der*_*ang 24 r classification svm

我是R的新手,我在R中使用该e1071软件包进行SVM分类.

我使用了以下代码:

data <- loadNumerical()

model <- svm(data[,-ncol(data)], data[,ncol(data)], gamma=10)

print(predict(model, data[c(1:20),-ncol(data)]))
Run Code Online (Sandbox Code Playgroud)

loadNumerical是用于装载数据,并且将数据的形式为(第一8列被输入并且最后一列是分类):

   [,1] [,2] [,3] [,4] [,5] [,6] [,7]      [,8] [,9]
1    39    1   -1   43   -1    1    0 0.9050497    0
2    23   -1   -1   30   -1   -1    0 1.6624974    1
3    50   -1   -1   49    1    1    2 1.5571429    0
4    46   -1    1   19   -1   -1    0 1.3523685    0
5    36    1    1   29   -1    1    1 1.3812029    1
6    27   -1   -1   19    1    1    0 1.9403649    0
7    36   -1   -1   25   -1    1    0 2.3360004    0
8    41    1    1   23    1   -1    1 2.4899738    0
9    21   -1   -1   18    1   -1    2 1.2989637    1
10   39   -1    1   21   -1   -1    1 1.6121595    0
Run Code Online (Sandbox Code Playgroud)

数据中的行数为500.

如上面的代码所示,我测试了前20行进行预测.输出是:

         1          2          3          4          5          6          7 
0.04906014 0.88230392 0.04910760 0.04910719 0.87302217 0.04898187 0.04909523 
         8          9         10         11         12         13         14 
0.04909199 0.87224979 0.04913189 0.04893709 0.87812890 0.04909588 0.04910999 
        15         16         17         18         19         20 
0.89837037 0.04903778 0.04914173 0.04897789 0.87572114 0.87001066 
Run Code Online (Sandbox Code Playgroud)

我可以直观地从结果中看出,当结果接近0时,它意味着0级,如果它接近1,则它在1级中.

但我的问题是如何才能准确地解释结果:我可以使用一个阈值s,以便将低于s的值归类为0,将高于s的值归类为1?

如果存在这样的s,我该如何得出它?

Ian*_*ows 34

由于结果变量是数字,因此它使用SVM的回归公式.我想你想要分类表达.您可以通过将结果强制转换为因子或设置来更改此设置type="C-classification".

回归:

> model <- svm(vs ~ hp+mpg+gear,data=mtcars)
> predict(model)
          Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
       0.8529506670        0.8529506670        0.9558654451        0.8423224174 
  Hornet Sportabout             Valiant          Duster 360           Merc 240D 
       0.0747730699        0.6952501964        0.0123405904        0.9966162477 
           Merc 230            Merc 280           Merc 280C          Merc 450SE 
       0.9494836511        0.7297563543        0.6909235343       -0.0327165348 
         Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
      -0.0092851098       -0.0504982402        0.0319974842        0.0504292348 
  Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
      -0.0504750284        0.9769206963        0.9724676874        0.9494910097 
      Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
       0.9496260289        0.1349744908        0.1251344111        0.0395243313 
   Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
       0.0983094417        1.0041732099        0.4348209129        0.6349628695 
     Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
       0.0009258333        0.0607896408        0.0507385269        0.8664157985 
Run Code Online (Sandbox Code Playgroud)

分类:

> model <- svm(as.factor(vs) ~ hp+mpg+gear,data=mtcars)
> predict(model)
          Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
                  1                   1                   1                   1 
  Hornet Sportabout             Valiant          Duster 360           Merc 240D 
                  0                   1                   0                   1 
           Merc 230            Merc 280           Merc 280C          Merc 450SE 
                  1                   1                   1                   0 
         Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
                  0                   0                   0                   0 
  Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
                  0                   1                   1                   1 
      Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
                  1                   0                   0                   0 
   Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
                  0                   1                   0                   1 
     Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
                  0                   0                   0                   1 
Levels: 0 1
Run Code Online (Sandbox Code Playgroud)

此外,如果您希望将概率作为预测而不仅仅是原始分类,则可以通过拟合概率选项来实现.

有概率:

> model <- svm(as.factor(vs) ~ hp+mpg+gear,data=mtcars,probability=TRUE)
> predict(model,mtcars,probability=TRUE)
          Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
                  1                   1                   1                   1 
  Hornet Sportabout             Valiant          Duster 360           Merc 240D 
                  0                   1                   0                   1 
           Merc 230            Merc 280           Merc 280C          Merc 450SE 
                  1                   1                   1                   0 
         Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
                  0                   0                   0                   0 
  Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
                  0                   1                   1                   1 
      Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
                  1                   0                   0                   0 
   Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
                  0                   1                   0                   1 
     Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
                  0                   0                   0                   1 
attr(,"probabilities")
                            0          1
Mazda RX4           0.2393753 0.76062473
Mazda RX4 Wag       0.2393753 0.76062473
Datsun 710          0.1750089 0.82499108
Hornet 4 Drive      0.2370382 0.76296179
Hornet Sportabout   0.8519490 0.14805103
Valiant             0.3696019 0.63039810
Duster 360          0.9236825 0.07631748
Merc 240D           0.1564898 0.84351021
Merc 230            0.1780135 0.82198650
Merc 280            0.3402143 0.65978567
Merc 280C           0.3829336 0.61706640
Merc 450SE          0.9110862 0.08891378
Merc 450SL          0.8979497 0.10205025
Merc 450SLC         0.9223868 0.07761324
Cadillac Fleetwood  0.9187301 0.08126994
Lincoln Continental 0.9153549 0.08464509
Chrysler Imperial   0.9358186 0.06418140
Fiat 128            0.1627969 0.83720313
Honda Civic         0.1649799 0.83502008
Toyota Corolla      0.1781531 0.82184689
Toyota Corona       0.1780519 0.82194807
Dodge Challenger    0.8427087 0.15729129
AMC Javelin         0.8496198 0.15038021
Camaro Z28          0.9190294 0.08097056
Pontiac Firebird    0.8361349 0.16386511
Fiat X1-9           0.1490934 0.85090660
Porsche 914-2       0.5797194 0.42028060
Lotus Europa        0.4169587 0.58304133
Ford Pantera L      0.8731716 0.12682843
Ferrari Dino        0.8392372 0.16076281
Maserati Bora       0.8519422 0.14805785
Volvo 142E          0.2289231 0.77107694
Run Code Online (Sandbox Code Playgroud)