Lis*_*isa 6 html javascript chart.js
我必须上传一个 90 MB 的 CSV 文件,然后使用 Chart.js 作为图表对其进行分析。CSV 文件包含每分钟记录的测量值。这 90 MB 几乎相当于一年的数据量。我已经将网站响应时间设置为较高的值。但我的代码正在付诸东流。这就是为什么我只显示一定数量的数据值,然后每隔一段时间单击图表。即使这样仍然很慢而且不好。对于评估来说,至少每月进行一次概述会更好。但我不知道我还能做出哪些调整。你有什么想法?
\n超文本标记语言
\n<!DOCTYPE html>\n<html lang="de">\n <head>\n <meta charset="UTF-8">\n <meta name="viewport" content="width=device-width, initial-scale=1.0">\n <title>CSV Diagramm mit Chart.js</title>\n <link rel="stylesheet" href="styles.css">\n </head>\n <body>\n <div id="drop-area" class="drop-area" style="width: 100%;" ondrop="handleDrop(event)" ondragover="handleDragOver(event)">\n <p>Datei hier ablegen</p>\n <input type="file" id="csvFileInput" accept=".csv" style="display:none;" onchange="handleUpload()">\n </div>\n <div class="chart-container" style="width: 100%;">\n <canvas id="myChart"></canvas>\n </div>\n <button onclick="showPreviousData()">Vorheriger Tag</button>\n <button onclick="showNextData()">N\xc3\xa4chster Tag</button>\n <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>\n <script src="https://cdnjs.cloudflare.com/ajax/libs/hammer.js/2.0.8/hammer.min.js" integrity="sha512-UXumZrZNiOwnTcZSHLOfcTs0aos2MzBWHXOHOuB0J/R44QB0dwY5JgfbvljXcklVf65Gc4El6RjZ+lnwd2az2g==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>\n <script src="https://cdnjs.cloudflare.com/ajax/libs/chartjs-plugin-zoom/2.0.1/chartjs-plugin-zoom.min.js" integrity="sha512-wUYbRPLV5zs6IqvWd88HIqZU/b8TBx+I8LEioQ/UC0t5EMCLApqhIAnUg7EsAzdbhhdgW07TqYDdH3QEXRcPOQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>\n <script src="script.js"></script>\n </body>\n</html>\nRun Code Online (Sandbox Code Playgroud)\nJS
\nlet startIndex = 0;\nconst displayCount = 1440;\nlet labels = [];\nlet datasets = [];\nlet originalDatasetVisibility = [];\n\nfunction handleUpload() {\n const fileInput = document.getElementById('csvFileInput');\n const file = fileInput.files[0];\n handleFile(file);\n}\n\nfunction processData(csvData) {\n const rows = csvData.split('\\n');\n labels = [];\n datasets = [];\n originalDatasetVisibility = [];\n\n const colors = ['rgba(255, 0, 0, 1)', 'rgba(0, 255, 0, 1)', 'rgba(255, 255, 0, 1)', 'rgba(0, 0, 255, 1)'];\n\n const columns = rows[0].split(';');\n\n for (let i = 1; i < columns.length; i++) {\n const data = [];\n const currentLabel = columns[i];\n const color = colors[i - 1];\n\n for (let j = 1; j < rows.length; j++) {\n const cols = rows[j].split(';');\n if (i === 1) {\n labels.push(cols[0]);\n }\n data.push(parseFloat(cols[i]));\n }\n\n const dataset = {\n label: currentLabel,\n data: data,\n backgroundColor: color,\n borderColor: color,\n fill: false,\n borderWidth: 1,\n pointRadius: 1,\n };\n\n datasets.push(dataset);\n originalDatasetVisibility.push(true);\n }\n\n createChart(labels.slice(startIndex, startIndex + displayCount), datasets, function() {\n console.log('Diagramm wurde erstellt');\n });\n}\n\nfunction createChart(labels, datasets, callback) {\n const chartContainer = document.querySelector('.chart-container');\n const canvasElement = document.getElementById('myChart');\n\n if (canvasElement) {\n chartContainer.removeChild(canvasElement);\n }\n\n chartContainer.innerHTML = '<canvas id="myChart"></canvas>';\n\n const ctx = document.getElementById('myChart').getContext('2d');\n window.myChart = new Chart(ctx, {\n type: 'line',\n data: {\n labels: labels,\n datasets: datasets.map((dataset, index) => ({\n ...dataset,\n data: dataset.data.slice(startIndex, startIndex + displayCount),\n hidden: !originalDatasetVisibility[index],\n })),\n },\n options: {\n scales: {\n x: {\n stacked: true,\n min: labels[startIndex],\n max: labels[startIndex + displayCount - 1],\n },\n y: {},\n },\n plugins: {\n zoom: {\n pan: {\n enabled: true,\n mode: 'x'\n },\n zoom: {\n wheel: {\n enabled: true,\n },\n pinch: {\n enabled: true\n },\n mode: 'x',\n }\n }\n }\n }\n });\n\n if (callback && typeof callback === 'function') {\n callback();\n }\n\n window.myChart.resetZoom();\n window.myChart.ctx.canvas.addEventListener('wheel', handleZoom);\n}\n\nfunction handleZoom(event) {\n const chart = window.myChart;\n const chartArea = chart.chartArea;\n const originalDatasets = chart.data.datasets;\n\n const zoomEnabled = chart.options.plugins.zoom.zoom.wheel.enabled;\n const deltaY = event.deltaY;\n\n if (zoomEnabled && deltaY !== 0) {\n const deltaMode = event.deltaMode;\n const scaleDelta = deltaY > 0 ? 0.9 : 1.1;\n\n let newMinIndex = chart.getDatasetMeta(0).data.findIndex(\n (d) => d.x >= chartArea.left\n );\n let newMaxIndex = chart.getDatasetMeta(0).data.findIndex(\n (d) => d.x >= chartArea.right\n );\n\n if (deltaMode === 0) {\n newMinIndex = Math.max(0, newMinIndex - Math.abs(deltaY));\n newMaxIndex = Math.min(\n originalDatasets[0].data.length - 1,\n newMaxIndex + Math.abs(deltaY)\n );\n } else if (deltaMode === 1) {\n newMinIndex = Math.max(0, newMinIndex - Math.abs(deltaY) * 10);\n newMaxIndex = Math.min(\n originalDatasets[0].data.length - 1,\n newMaxIndex + Math.abs(deltaY) * 10\n );\n }\n\n const newMinLabel = originalDatasets[0].data[newMinIndex].label;\n const newMaxLabel = originalDatasets[0].data[newMaxIndex].label;\n\n chart.options.scales.x.min = newMinLabel;\n chart.options.scales.x.max = newMaxLabel;\n\n chart.update();\n }\n}\n\nfunction handleFile(file) {\n if (file) {\n const reader = new FileReader();\n\n reader.onload = function (e) {\n const csvData = e.target.result;\n processData(csvData);\n };\n\n reader.readAsText(file);\n } else {\n alert('Bitte eine CSV-Datei ausw\xc3\xa4hlen.');\n }\n}\n\nfunction handleDrop(event) {\n event.preventDefault();\n const file = event.dataTransfer.files[0];\n handleFile(file);\n}\n\nfunction handleDragOver(event) {\n event.preventDefault();\n}\n\nfunction showPreviousData() {\n if (startIndex - displayCount >= 0) {\n startIndex -= displayCount;\n updateChart();\n }\n}\n\nfunction showNextData() {\n if (startIndex + displayCount < labels.length) {\n startIndex += displayCount;\n updateChart();\n }\n}\n\nfunction updateChart() {\n const endIndex = Math.min(startIndex + displayCount, labels.length);\n const updatedLabels = labels.slice(startIndex, endIndex);\n const updatedDatasets = datasets.map((dataset, index) => ({\n ...dataset,\n data: dataset.data.slice(startIndex, endIndex),\n hidden: !originalDatasetVisibility[index],\n }));\n\n window.myChart.data.labels = updatedLabels;\n window.myChart.data.datasets = updatedDatasets;\n window.myChart.options.scales.x.min = updatedLabels[0];\n window.myChart.options.scales.x.max = updatedLabels[updatedLabels.length - 1];\n\n window.myChart.update();\n}\n\nfunction removeZoomEventListener() {\n window.myChart.ctx.canvas.removeEventListener('wheel', handleZoom);\n}\n\nRun Code Online (Sandbox Code Playgroud)\n
这取决于您的用例、数据必须如何可视化、表示必须有多精确以及它需要多快。
基本上有两个攻击点:“缩小”数据并保持客户端工作负载较低。
也就是说,这里有一些提高性能的技巧:
ChartJs相关
查看 Chartjs官方性能“提示和技巧”
图 1:细微调整 ~ 70 秒(5255999 数据行)

图 2:细微调整 + 固定缩放 ~ 3 秒(5255999 数据行)

准备数据以便于使用
您可以加载一小块数据并异步加载数据,并更新图表数据,查看此更新图表示例
在数据/Web端
额外提示:如果您不必使用图表,请查看此问题/答案,建议使用Highcharts来处理大数据,而不是图表。
| 归档时间: |
|
| 查看次数: |
140 次 |
| 最近记录: |