使用预先计算的内核和libsvm

Hen*_*rik 20 matlab machine-learning svm libsvm

我目前正致力于使用不同的图像描述符对图像进行分类.由于他们有自己的指标,我使用预先计算的内核.因此,考虑到这些NxN内核矩阵(总共N个图像),我想训练和测试SVM.虽然我对使用SVM不是很有经验.

令我困惑的是如何输入培训输入.使用内核MxM的子集(M是训练图像的数量),训练具有M个特征的SVM.但是,如果我理解正确,这限制了我使用具有相似数量的功能的测试数据.尝试使用大小为MxN的子内核,在训练期间会导致无限循环,因此,在测试时使用更多功能会产生不良结果.

这导致使用相同大小的训练和测试集给出合理的结果.但是,如果我只想分类,说一张​​图像,或者为每个班级训练一定数量的图像并用其余的训练,这根本不起作用.

如何消除培训图像和功能的数量之间的依赖关系,以便我可以测试任意数量的图像?

我正在使用libsvm for MATLAB,内核是距离矩阵,范围在[0,1]之间.

Amr*_*mro 41

您似乎已经找到了问题...根据MATLAB包中包含的README文件:

要使用预先计算的内核,必须包含样本序列号作为培训和测试数据的第一列.

让我用一个例子来说明:

%# read dataset
[dataClass, data] = libsvmread('./heart_scale');

%# split into train/test datasets
trainData = data(1:150,:);
testData = data(151:270,:);
trainClass = dataClass(1:150,:);
testClass = dataClass(151:270,:);
numTrain = size(trainData,1);
numTest = size(testData,1);

%# radial basis function: exp(-gamma*|u-v|^2)
sigma = 2e-3;
rbfKernel = @(X,Y) exp(-sigma .* pdist2(X,Y,'euclidean').^2);

%# compute kernel matrices between every pairs of (train,train) and
%# (test,train) instances and include sample serial number as first column
K =  [ (1:numTrain)' , rbfKernel(trainData,trainData) ];
KK = [ (1:numTest)'  , rbfKernel(testData,trainData)  ];

%# train and test
model = svmtrain(trainClass, K, '-t 4');
[predClass, acc, decVals] = svmpredict(testClass, KK, model);

%# confusion matrix
C = confusionmat(testClass,predClass)
Run Code Online (Sandbox Code Playgroud)

输出:

*
optimization finished, #iter = 70
nu = 0.933333
obj = -117.027620, rho = 0.183062
nSV = 140, nBSV = 140
Total nSV = 140
Accuracy = 85.8333% (103/120) (classification)

C =
    65     5
    12    38
Run Code Online (Sandbox Code Playgroud)