use*_*463 5 python-3.x llama-index large-language-model llama
我使用下面的 llama-index 代码从保存的文本语料库创建索引对象。然后,我加载保存的索引对象并查询它以生成响应。我正在使用 openai apikey,因此我可以使用 chatgpt 模型来获得 LLM。我想知道是否可以使用相同的代码或修改版本来使用开源 LLM,例如我已在本地计算机上下载模型权重的 llama-7b-chat。有谁知道这是否可行,您能建议我如何更新下面的代码才能使用本地托管的开源LLM吗?
代码:
# creating index from corpus
from config import api_key, old_api_key, personal_api_key
import os
os.environ['OPENAI_API_KEY'] = old_api_key
# Load you data into 'Documents' a custom type by LlamaIndex
# from typing_extensions import Protocol
from llama_index import SimpleDirectoryReader
documents = SimpleDirectoryReader('./data').load_data()
from llama_index import GPTVectorStoreIndex
index = GPTVectorStoreIndex.from_documents(documents)
# save storage context
storage_context_dict=index.storage_context.to_dict()
import json
# Serialize data into file:
json.dump( storage_context_dict, open( "general_attributes_storage_context_dict.json", 'w' ) )
# load saved context
import os
# plus
os.environ['OPENAI_API_KEY'] = old_api_key
# using previously saved index
import json
saved_context=json.load( open( "general_attributes_storage_context_dict.json" ) )
from llama_index import StorageContext, load_index_from_storage
# rebuild storage context
storage_context=StorageContext.from_dict(saved_context)
stored_index=load_index_from_storage(storage_context)
query_engine = stored_index.as_query_engine()
response = query_engine.query("some question")
print(response)
Run Code Online (Sandbox Code Playgroud)
小智 2
from llama_index import SimpleDirectoryReader, ServiceContext, VectorStoreIndex
from llama_index import StorageContext, load_index_from_storage
llm = ('load local llm')
service_context = ServiceContext.from_defaults(llm=llm)
documents = SimpleDirectoryReader('./data').load_data()
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
index.storage_context.persist("data_index")
context = StorageContext.from_defaults(persist_dir='data_index')
stored_index = load_index_from_storage(context, service_context=service_context)
query_engine = stored_index.as_query_engine()
response = query_engine.query("some question")
print(response)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2901 次 |
| 最近记录: |