dan*_*iaz 7 haskell applicative
我正在查看这些These
包中的数据类型,特别是在其实例中:Applicative
instance (Semigroup a) => Applicative (These a) where
pure = That
This a <*> _ = This a
That _ <*> This b = This b
That f <*> That x = That (f x)
That f <*> These b x = These b (f x)
These a _ <*> This b = This (a <> b)
These a f <*> That x = These a (f x)
These a f <*> These b x = These (a <> b) (f x)
Run Code Online (Sandbox Code Playgroud)
如果其中之一These
是 a This
,则结果始终是This
。然而,似乎存在一定的不对称性。
在这里,如果第二个组件是These
构造函数,则其信息将被完全丢弃:
This a <*> _ = This a
Run Code Online (Sandbox Code Playgroud)
这里的第一个组件是These
构造函数,但该a
部分保留在结果中。
These a _ <*> This b = This (a <> b)
Run Code Online (Sandbox Code Playgroud)
在 ghci 中测试它:
ghci> This "a" <*> These "b" True
This "a"
ghci> These "a" not <*> This "b"
This "ab"
Run Code Online (Sandbox Code Playgroud)
但是如果我们在开头添加一个案例,比如
This a <*> These b _ = This (a <> b)
Run Code Online (Sandbox Code Playgroud)
这会违反Applicative
法律吗?
您提出的实例是合法的。展示这一点的一种方法是通过These
一对可能进行近似:
{-# LANGUAGE GHC2021, LambdaCase, PatternSynonyms #-}
import Data.These
import Data.Functor.Product
import Data.Functor.Const
newtype NotQuiteThese a b = NQT (Product (Const (Maybe a)) Maybe b)
deriving (Show, Functor, Applicative)
pattern Neither = NQT (Pair (Const Nothing) Nothing)
pattern This' a = NQT (Pair (Const (Just a)) Nothing)
pattern That' b = NQT (Pair (Const Nothing) (Just b))
pattern These' a b = NQT (Pair (Const (Just a)) (Just b))
theseToNqt :: These a b -> NotQuiteThese a b
theseToNqt = \case
This a -> This' a
That b -> That' b
These a b -> These' a b
-- nqtToThese . theseToNqt = Just
nqtToThese :: NotQuiteThese a b -> Maybe (These a b)
nqtToThese = \case
Neither -> Nothing
This' a -> Just (This a)
That' b -> Just (That b)
These' a b -> Just (These a b)
Run Code Online (Sandbox Code Playgroud)
NotQuiteThese
These
由于多余的情况,与 不同构Neither
。不过,就我们当前的目的而言,这不是问题:就非案例而言,此处使用的编码产生的instance Semigroup a => Applicative (NotQuiteThese a)
相当于您建议的实例Neither
。(第一个Maybe
将半群提升为幺半群,Const
进一步将其提升为应用函子,并且应用的乘积是应用的。)下面是一个快速演示:
ghci> nqtToThese $ theseToNqt (These "foo" (2*)) <*> theseToNqt (This "bar")
Just (This "foobar")
ghci> nqtToThese $ theseToNqt (This "foo") <*> theseToNqt (These "bar" 7)
Just (This "foobar")
Run Code Online (Sandbox Code Playgroud)
规范实例中的不对称性These
是为了与Monad
实例兼容而强加的,因此(<*>) = ap
成立。不可避免This a >>= _ = This a
从句的意思是ap (This a) _ = This a
。这种情况类似于及其误差累积变体之间的对比Either
Validation
。
最后一点,如果出于实际目的需要使用These
-plus-类型,您可以从粉碎包中使用- 只要您不介意有一个实例,因此也不介意不对称。Neither
Can
Can
Monad
Applicative