Luc*_*edo 14 python huggingface-transformers llama-index peft
model = AutoModelForCausalLM.from_pretrained("finetuned_model")
Run Code Online (Sandbox Code Playgroud)
产量Killed.
产量
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "lucas0/empath-llama-7b"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(cwd+"/tokenizer.model")
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
Run Code Online (Sandbox Code Playgroud)
产量
AttributeError: /home/ubuntu/empath/lora/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cget_col_row_stats
Run Code Online (Sandbox Code Playgroud)
我使用 PEFT 和 LoRa 微调了模型:
model = AutoModelForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
torch_dtype=torch.float16,
device_map='auto',
)
Run Code Online (Sandbox Code Playgroud)
我必须下载并手动指定 llama 标记器。
tokenizer = LlamaTokenizer(cwd+"/tokenizer.model")
tokenizer.pad_token = tokenizer.eos_token
Run Code Online (Sandbox Code Playgroud)
参加培训:
from peft import LoraConfig, get_peft_model
config = LoraConfig(
    r=8,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
data = pd.read_csv("my_csv.csv")
dataset = Dataset.from_pandas(data)
tokenized_dataset = dataset.map(lambda samples: tokenizer(samples["text"]))
trainer = transformers.Trainer(
    model=model,
    train_dataset=tokenized_dataset,
    args=transformers.TrainingArguments(
        per_device_train_batch_size=4,
        gradient_accumulation_steps=4,
        warmup_steps=100,
        max_steps=100,
        learning_rate=1e-3,
        fp16=True,
        logging_steps=1,
        output_dir='outputs',
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
model.config.use_cache = True  # silence the warnings. Please re-enable for inference!
trainer.train()
Run Code Online (Sandbox Code Playgroud)
并将其保存在本地:
trainer.save_model(cwd+"/finetuned_model")
print("saved trainer locally")
Run Code Online (Sandbox Code Playgroud)
以及到枢纽:
model.push_to_hub("lucas0/empath-llama-7b", create_pr=1)
Run Code Online (Sandbox Code Playgroud)
如何加载我的微调模型?
alv*_*vas 11
要加载微调的 peft/lora 模型,请查看 guanco 示例,/sf/answers/5346067331/
import torch
from peft import PeftModel    
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
model_name = "decapoda-research/llama-7b-hf"
adapters_name = "lucas0/empath-llama-7b"
print(f"Starting to load the model {model_name} into memory")
m = AutoModelForCausalLM.from_pretrained(
    model_name,
    #load_in_4bit=True,
    torch_dtype=torch.bfloat16,
    device_map={"": 0}
)
m = PeftModel.from_pretrained(m, adapters_name)
m = m.merge_and_unload()
tok = LlamaTokenizer.from_pretrained(model_name)
tok.bos_token_id = 1
stop_token_ids = [0]
print(f"Successfully loaded the model {model_name} into memory")
Run Code Online (Sandbox Code Playgroud)
您至少需要 A10g GPU 运行时才能正确加载模型。
欲了解更多详情,请参阅