Muh*_*ira 4 python stdout output yolo yolov8
我有这个输出是由model.predict()
0: 480x640 1 Hole, 234.1ms
Speed: 3.0ms preprocess, 234.1ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 640)
0: 480x640 1 Hole, 193.6ms
Speed: 3.0ms preprocess, 193.6ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)
...
Run Code Online (Sandbox Code Playgroud)
如何隐藏终端的输出?
我在这个官方链接中找不到信息 https://docs.ultralytics.com/modes/predict/#arguments
Mik*_*e B 12
遗憾的是,截至目前,Ultralytics 文档还不是最新的。正确的做法是:
from ultralytics import YOLO
model = YOLO('yolov8m-seg.pt')
results = model.predict(source='0', verbose=False)
for result in results:
masks = result.masks.masks
print(masks.shape)
Run Code Online (Sandbox Code Playgroud)
注意verbose=False论证。这不会打印默认输出
...
0: 480x640 1 Hole, 193.6ms
Speed: 3.0ms preprocess, 193.6ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)
...
Run Code Online (Sandbox Code Playgroud)
仅在这种情况下:
...
torch.Size([4, 480, 640])
...
Run Code Online (Sandbox Code Playgroud)