Ahm*_*mad 3 python pandas python-polars
我正在尝试在极坐标数据框中显示列的完整宽度。给定以下极坐标数据框:
\nimport polars as pl \n\ndf = pl.DataFrame({\n \'column_1\': [\'TF-IDF embeddings are done on the initial corpus, with no additional N-Gram representations or further preprocessing\', \'In the eager API, the expression is evaluated immediately. The eager API produces results immediately after execution, similar to pandas. The lazy API is similar to Spark, where a plan is formed upon execution of a query, but the plan does not actually access the data until the collect method is called to execute the query in parallel across all CPU cores. In simple terms: Lazy execution means that an expression is not immediately evaluated.\'],\n \'column_2\': [\'Document clusterings may misrepresent the visualization of document clusterings due to dimensionality reduction (visualization is pleasing for its own sake - rather than for prediction/inference)\', \'Polars has two APIs, eager and lazy. In the eager API, the expression is evaluated immediately. The eager API produces results immediately after execution, similar to pandas. The lazy API is similar to Spark, where a plan is formed upon execution of a query, but the plan does not actually access the data until the collect method is called to execute the query in parallel across all CPU cores. In simple terms: Lazy execution means that an expression is not immediately evaluated.\']\n})\nRun Code Online (Sandbox Code Playgroud)\n我尝试了以下方法:
\npl.Config.set_fmt_str_lengths = 200\npl.Config.set_tbl_width_chars = 200\nRun Code Online (Sandbox Code Playgroud)\n结果:
\nshape: (2, 2)\n\xe2\x94\x8c\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\xac\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x90\n\xe2\x94\x82 column_1 \xe2\x94\x86 column_2 \xe2\x94\x82\n\xe2\x94\x82 --- \xe2\x94\x86 --- \xe2\x94\x82\n\xe2\x94\x82 str \xe2\x94\x86 str \xe2\x94\x82\n\xe2\x95\x9e\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xaa\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xa1\n\xe2\x94\x82 TF-IDF embeddings are done on th\xe2\x80\xa6 \xe2\x94\x86 Document clusterings may misrepr\xe2\x80\xa6 \xe2\x94\x82\n\xe2\x94\x82 In the eager API, the expression\xe2\x80\xa6 \xe2\x94\x86 Polars has two APIs, eager and l\xe2\x80\xa6 \xe2\x94\x82\n\xe2\x94\x94\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\xb4\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x98\nRun Code Online (Sandbox Code Playgroud)\n如何在 Python 中显示 Polars DataFrame 中列的完整宽度?
\n提前致谢!
\n我认为你可以使用glimpse:
> df.glimpse()
Rows: 2
Columns: 2
$ column_1 <str> TF-IDF embeddings are done on the initial corpus, with no additional N-Gram representations or further preprocessing, In the eager API, the expression is evaluated immediately. The eager API produces results immediately after execution, similar to pandas. The lazy API is similar to Spark, where a plan is formed upon execution of a query, but the plan does not actually access the data until the collect method is called to execute the query in parallel across all CPU cores. In simple terms: Lazy execution means that an expression is not immediately evaluated.
$ column_2 <str> Document clusterings may misrepresent the visualization of document clusterings due to dimensionality reduction (visualization is pleasing for its own sake - rather than for prediction/inference), Polars has two APIs, eager and lazy. In the eager API, the expression is evaluated immediately. The eager API produces results immediately after execution, similar to pandas. The lazy API is similar to Spark, where a plan is formed upon execution of a query, but the plan does not actually access the data until the collect method is called to execute the query in parallel across all CPU cores. In simple terms: Lazy execution means that an expression is not immediately evaluated.
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4053 次 |
| 最近记录: |