找到两个浮点数的比率的算法?

Sup*_*tar 15 algorithm floating-point integer

我需要找到一个浮点数与另一个浮点数的比率,该比率需要是两个整数.例如:

  • 输入: 1.5, 3.25
  • 输出: "6:13"

有谁知道吗?在互联网上搜索,我没有找到这样的算法,也没有找到两个浮点数(只是整数)的最小公倍数或分母的算法.

Java实现:


这是我将使用的最终实现:

public class RatioTest
{
  public static String getRatio(double d1, double d2)//1.5, 3.25
  {
    while(Math.max(d1,d2) < Long.MAX_VALUE && d1 != (long)d1 && d2 != (long)d2)
    {
      d1 *= 10;//15 -> 150
      d2 *= 10;//32.5 -> 325
    }
    //d1 == 150.0
    //d2 == 325.0
    try
    {
      double gcd = getGCD(d1,d2);//gcd == 25
      return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));//"6:13"
    }
    catch (StackOverflowError er)//in case getGDC (a recursively looping method) repeats too many times
    {
      throw new ArithmeticException("Irrational ratio: " + d1 + " to " + d2);
    }
  }

  public static double getGCD(double i1, double i2)//(150,325) -> (150,175) -> (150,25) -> (125,25) -> (100,25) -> (75,25) -> (50,25) -> (25,25)
  {
    if (i1 == i2)
      return i1;//25
    if (i1 > i2)
      return getGCD(i1 - i2, i2);//(125,25) -> (100,25) -> (75,25) -> (50,25) -> (25,25)
    return getGCD(i1, i2 - i1);//(150,175) -> (150,25)
  }
}
Run Code Online (Sandbox Code Playgroud)
  • -> 表示循环或方法调用的下一个阶段

神秘的Java实现:


虽然我最终没有使用它,但它应该被认可,所以我把它翻译成Java,所以我能理解它:

import java.util.Stack;

public class RatioTest
{
    class Fraction{
        long num;
        long den;
        double val;
    };

    Fraction build_fraction(Stack<long> cf){
        long term = cf.size();
        long num = cf[term - 1];
        long den = 1;
        while (term-- > 0){
            long tmp = cf[term];

            long new_num = tmp * num + den;
            long new_den = num;

            num = new_num;
            den = new_den;
        }

        Fraction f;
        f.num = num;
        f.den = den;
        f.val = (double)num / (double)den;

        return f;
    }

    void get_fraction(double x){
        System.out.println("x = " + x);

        //  Generate Continued Fraction
        System.out.print("Continued Fraction: ");
        double t = Math.abs(x);
        double old_error = x;
        Stack<long> cf;
        Fraction f;
        do{
            //  Get next term.
            long tmp = (long)t;
            cf.push(tmp);

            //  Build the current convergent
            f = build_fraction(cf);

            //  Check error
            double new_error = Math.abs(f.val - x);
            if (tmp != 0 && new_error >= old_error){
                //  New error is bigger than old error.
                //  This means that the precision limit has been reached.
                //  Pop this (useless) term and break out.
                cf.pop();
                f = build_fraction(cf);
                break;
            }
            old_error = new_error;
            System.out.print(tmp + ", ");

            //  Error is zero. Break out.
            if (new_error == 0)
                break;

            t -= tmp;
            t = 1/t;
        }while (cf.size() < 39); //  At most 39 terms are needed for double-precision.
        System.out.println();System.out.println();

        //  Print Results
        System.out.println("The fraction is:   " + f.num + " / " + f.den);
        System.out.println("Target x = " + x);
        System.out.println("Fraction = " + f.val);
        System.out.println("Relative error is: " + (Math.abs(f.val - x) / x));System.out.println();
        System.out.println();
    }
    public static void main(String[] args){
        get_fraction(15.38 / 12.3);
        get_fraction(0.3333333333333333333);    //  1 / 3
        get_fraction(0.4184397163120567376);    //  59 / 141
        get_fraction(0.8323518818409020299);    //  1513686 / 1818565
        get_fraction(3.1415926535897932385);    //  pi
    }
}
Run Code Online (Sandbox Code Playgroud)

还有一件事:


上面提到的实现方法在理论中有效,但是,由于浮点舍入错误,这会导致很多意外的异常,错误和输出.下面是一个实用,强大但有点脏的比率查找算法(Javadoc为方便起见):

public class RatioTest
{
  /** Represents the radix point */
  public static final char RAD_POI = '.';

  /**
   * Finds the ratio of the two inputs and returns that as a <tt>String</tt>
   * <h4>Examples:</h4>
   * <ul>
   * <li><tt>getRatio(0.5, 12)</tt><ul>
     *   <li>returns "<tt>24:1</tt>"</li></ul></li>
   * <li><tt>getRatio(3, 82.0625)</tt><ul>
   *   <li>returns "<tt>1313:48</tt>"</li></ul></li>
   * </ul>
   * @param d1 the first number of the ratio
   * @param d2 the second number of the ratio
   * @return the resulting ratio, in the format "<tt>X:Y</tt>"
   */
  public static strictfp String getRatio(double d1, double d2)
  {
    while(Math.max(d1,d2) < Long.MAX_VALUE && (!Numbers.isCloseTo(d1,(long)d1) || !Numbers.isCloseTo(d2,(long)d2)))
    {
      d1 *= 10;
      d2 *= 10;
    }
    long l1=(long)d1,l2=(long)d2;
    try
    {
      l1 = (long)teaseUp(d1); l2 = (long)teaseUp(d2);
      double gcd = getGCDRec(l1,l2);
      return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));
    }
    catch(StackOverflowError er)
    {
      try
      {
        double gcd = getGCDItr(l1,l2);
        return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));
      }
      catch (Throwable t)
      {
        return "Irrational ratio: " + l1 + " to " + l2;
      }
    }
  }


  /**
   * <b>Recursively</b> finds the Greatest Common Denominator (GCD)
   * @param i1 the first number to be compared to find the GCD
   * @param i2 the second number to be compared to find the GCD
   * @return the greatest common denominator of these two numbers
   * @throws StackOverflowError if the method recurses to much
   */
  public static long getGCDRec(long i1, long i2)
  {
    if (i1 == i2)
      return i1;
    if (i1 > i2)
      return getGCDRec(i1 - i2, i2);
    return getGCDRec(i1, i2 - i1);
  }

  /**
   * <b>Iteratively</b> finds the Greatest Common Denominator (GCD)
   * @param i1 the first number to be compared to find the GCD
   * @param i2 the second number to be compared to find the GCD
   * @return the greatest common denominator of these two numbers
   */
  public static long getGCDItr(long i1, long i2)
  {
    for (short i=0; i < Short.MAX_VALUE &&  i1 != i2; i++)
    {
      while (i1 > i2)
        i1 = i1 - i2;
      while (i2 > i1)
        i2 = i2 - i1;
    }
      return i1;
  }

  /**
   * Calculates and returns whether <tt>d1</tt> is close to <tt>d2</tt>
   * <h4>Examples:</h4>
   * <ul>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.0001</tt>, <tt>d2 == 5</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5.0001</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.24999</tt>, <tt>d2 == 5.25</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.25</tt>, <tt>d2 == 5.24999</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5.1</tt>
   *   <ul><li>returns <tt>false</tt></li></ul></li>
   * </ul>
   * @param d1 the first number to compare for closeness
   * @param d2 the second number to compare for closeness
   * @return <tt>true</tt> if the two numbers are close, as judged by this method
   */
  public static boolean isCloseTo(double d1, double d2)
  {
    if (d1 == d2)
      return true;
    double t;
    String ds = Double.toString(d1);
    if ((t = teaseUp(d1-1)) == d2 || (t = teaseUp(d2-1)) == d1)
      return true;
    return false;
  }

  /**
   * continually increases the value of the last digit in <tt>d1</tt> until the length of the double changes
   * @param d1
   * @return
   */
  public static double teaseUp(double d1)
  {
    String s = Double.toString(d1), o = s;
    byte b;
    for (byte c=0; Double.toString(extractDouble(s)).length() >= o.length() && c < 100; c++)
      s = s.substring(0, s.length() - 1) + ((b = Byte.parseByte(Character.toString(s.charAt(s.length() - 1)))) == 9 ? 0 : b+1);
    return extractDouble(s);
  }

  /**
   * Works like Double.parseDouble, but ignores any extraneous characters. The first radix point (<tt>.</tt>) is the only one treated as such.<br/>
   * <h4>Examples:</h4>
   * <li><tt>extractDouble("123456.789")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("1qw2e3rty4uiop[5a'6.p7u8&9")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("123,456.7.8.9")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("I have $9,862.39 in the bank.")</tt> returns the double value of <tt>9862.39</tt></li>
   * @param str The <tt>String</tt> from which to extract a <tt>double</tt>.
   * @return the <tt>double</tt> that has been found within the string, if any.
   * @throws NumberFormatException if <tt>str</tt> does not contain a digit between 0 and 9, inclusive.
   */
  public static double extractDouble(String str) throws NumberFormatException
  {
    try
    {
      return Double.parseDouble(str);
    }
    finally
    {
      boolean r = true;
      String d = "";
      for (int i=0; i < str.length(); i++)
        if (Character.isDigit(str.charAt(i)) || (str.charAt(i) == RAD_POI && r))
        {
          if (str.charAt(i) == RAD_POI && r)
            r = false;
          d += str.charAt(i);
        }
      try
      {
        return Double.parseDouble(d);
      }
      catch (NumberFormatException ex)
      {
        throw new NumberFormatException("The input string could not be parsed to a double: " + str);
      }
    }
  }
}
Run Code Online (Sandbox Code Playgroud)

Mys*_*ial 17

这是一项相当重要的任务.我所知道的最好的方法是为任何两个浮点提供可靠的结果是使用连续分数.

首先,将两个数字相除以得到浮点比率.然后运行连续分数算法直到它终止.如果它没有终止,那么它是不合理的,没有解决方案.

如果它终止,则将得到的连续分数评估回单个分数,这将是答案.

当然,没有可靠的方法来确定是否存在解决方案,因为这成为暂停问题.但是出于有限精度浮点的目的,如果序列没有以合理的步数终止,那么假设没有答案.

编辑2:这是我在C++中的原始解决方案的更新.这个版本更强大,似乎与任何正浮点数工作除了INF,NAN或非常大或小,将溢出的整数值.

typedef unsigned long long  uint64;
struct Fraction{
    uint64 num;
    uint64 den;
    double val;
};
Fraction build_fraction(vector<uint64> &cf){
    uint64 term = cf.size();
    uint64 num = cf[--term];
    uint64 den = 1;
    while (term-- > 0){
        uint64 tmp = cf[term];

        uint64 new_num = tmp * num + den;
        uint64 new_den = num;

        num = new_num;
        den = new_den;
    }

    Fraction f;
    f.num = num;
    f.den = den;
    f.val = (double)num / den;

    return f;
}
void get_fraction(double x){
    printf("x = %0.16f\n",x);

    //  Generate Continued Fraction
    cout << "Continued Fraction: ";
    double t = abs(x);
    double old_error = x;
    vector<uint64> cf;
    Fraction f;
    do{
        //  Get next term.
        uint64 tmp = (uint64)t;
        cf.push_back(tmp);

        //  Build the current convergent
        f = build_fraction(cf);

        //  Check error
        double new_error = abs(f.val - x);
        if (tmp != 0 && new_error >= old_error){
            //  New error is bigger than old error.
            //  This means that the precision limit has been reached.
            //  Pop this (useless) term and break out.
            cf.pop_back();
            f = build_fraction(cf);
            break;
        }
        old_error = new_error;
        cout << tmp << ", ";

        //  Error is zero. Break out.
        if (new_error == 0)
            break;

        t -= tmp;
        t = 1/t;
    }while (cf.size() < 39); //  At most 39 terms are needed for double-precision.
    cout << endl << endl;

    //  Print Results
    cout << "The fraction is:   " << f.num << " / " << f.den << endl;
    printf("Target x = %0.16f\n",x);
    printf("Fraction = %0.16f\n",f.val);
    cout << "Relative error is: " << abs(f.val - x) / x << endl << endl;
    cout << endl;
}
int main(){
    get_fraction(15.38 / 12.3);
    get_fraction(0.3333333333333333333);    //  1 / 3
    get_fraction(0.4184397163120567376);    //  59 / 141
    get_fraction(0.8323518818409020299);    //  1513686 / 1818565
    get_fraction(3.1415926535897932385);    //  pi
    system("pause");
}
Run Code Online (Sandbox Code Playgroud)

输出:

x = 1.2504065040650407
Continued Fraction: 1, 3, 1, 152, 1,

The fraction is:   769 / 615
Target x = 1.2504065040650407
Fraction = 1.2504065040650407
Relative error is: 0


x = 0.3333333333333333
Continued Fraction: 0, 3,

The fraction is:   1 / 3
Target x = 0.3333333333333333
Fraction = 0.3333333333333333
Relative error is: 0


x = 0.4184397163120567
Continued Fraction: 0, 2, 2, 1, 1, 3, 3,

The fraction is:   59 / 141
Target x = 0.4184397163120567
Fraction = 0.4184397163120567
Relative error is: 0


x = 0.8323518818409020
Continued Fraction: 0, 1, 4, 1, 27, 2, 7, 1, 2, 13, 3, 5,

The fraction is:   1513686 / 1818565
Target x = 0.8323518818409020
Fraction = 0.8323518818409020
Relative error is: 0


x = 3.1415926535897931
Continued Fraction: 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3,

The fraction is:   245850922 / 78256779
Target x = 3.1415926535897931
Fraction = 3.1415926535897931
Relative error is: 0


Press any key to continue . . .
Run Code Online (Sandbox Code Playgroud)

这里要注意的是它给予245850922 / 78256779pi.显然,pi是不合理的.但就双精度允许而言,245850922 / 78256779并没有任何不同pi.

基本上,与8中任馏分-在分子/分母9位有足够的熵,以覆盖几乎所有的DP浮点值(除拐角情况一样INF,NAN,或非常大的/小的值).


Aus*_*nen 8

假设您有一个可以处理任意大数值的数据类型,您可以这样做:

  1. 将两个值乘以10,直到有效位数完全位于小数点的左侧.
  2. 找到两个值的最大公分母.
  3. 除以GCD

所以对于你的例子,你会有这样的事情:

a = 1.5
b = 3.25

multiply by 10:  15, 32.5
multiply by 10:  150, 325

find GCD:  25

divide by GCD:  6, 13

  • 看到我的其他评论.这取决于你想要的数字和分数.这些缩放方法并不总能给出诸如"1/3"之类的分数,如果这是所需答案的话. (6认同)