YOLOv8获取预测边界框

Lou*_*uis 10 python opencv yolo

我想将 OpenCV 与 YOLOv8 集成ultralytics,所以我想从模型预测中获取边界框坐标。我该怎么做呢?

from ultralytics import YOLO
import cv2

model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)

while True:
    _, frame = cap.read()
    
    img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    results = model.predict(img)

    for r in results:
        for c in r.boxes.cls:
            print(model.names[int(c)])

    cv2.imshow('YOLO V8 Detection', frame)
    if cv2.waitKey(1) & 0xFF == ord(' '):
        break

cap.release()
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)

我想在 OpenCV 中显示 YOLO 带注释的图像。我知道我可以在model.predict(source='0', show=True). 但我想连续监视我的程序的预测类名称,同时显示图像输出。

Mik*_*e B 21

这会:

  1. 循环播放视频中的每一帧
  2. 将每一帧传递给 Yolov8,它将生成边界框
  3. 使用内置的 ultralytics 注释器在框架上绘制边界框:

from ultralytics import YOLO
import cv2
from ultralytics.utils.plotting import Annotator  # ultralytics.yolo.utils.plotting is deprecated

model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)

while True:
    _, img = cap.read()
    
    # BGR to RGB conversion is performed under the hood
    # see: https://github.com/ultralytics/ultralytics/issues/2575
    results = model.predict(img)

    for r in results:
        
        annotator = Annotator(img)
        
        boxes = r.boxes
        for box in boxes:
            
            b = box.xyxy[0]  # get box coordinates in (left, top, right, bottom) format
            c = box.cls
            annotator.box_label(b, model.names[int(c)])
          
    img = annotator.result()  
    cv2.imshow('YOLO V8 Detection', img)     
    if cv2.waitKey(1) & 0xFF == ord(' '):
        break

cap.release()
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)


Roy*_*yal 13

您可以使用以下代码获取所有信息:

for result in results:
    # detection
    result.boxes.xyxy   # box with xyxy format, (N, 4)
    result.boxes.xywh   # box with xywh format, (N, 4)
    result.boxes.xyxyn  # box with xyxy format but normalized, (N, 4)
    result.boxes.xywhn  # box with xywh format but normalized, (N, 4)
    result.boxes.conf   # confidence score, (N, 1)
    result.boxes.cls    # cls, (N, 1)

    # segmentation
    result.masks.masks     # masks, (N, H, W)
    result.masks.segments  # bounding coordinates of masks, List[segment] * N

    # classification
    result.probs     # cls prob, (num_class, )
Run Code Online (Sandbox Code Playgroud)

您可以在文档中进一步阅读。