Lou*_*uis 10 python opencv yolo
我想将 OpenCV 与 YOLOv8 集成ultralytics
,所以我想从模型预测中获取边界框坐标。我该怎么做呢?
from ultralytics import YOLO
import cv2
model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
_, frame = cap.read()
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model.predict(img)
for r in results:
for c in r.boxes.cls:
print(model.names[int(c)])
cv2.imshow('YOLO V8 Detection', frame)
if cv2.waitKey(1) & 0xFF == ord(' '):
break
cap.release()
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
我想在 OpenCV 中显示 YOLO 带注释的图像。我知道我可以在model.predict(source='0', show=True)
. 但我想连续监视我的程序的预测类名称,同时显示图像输出。
Mik*_*e B 21
这会:
from ultralytics import YOLO
import cv2
from ultralytics.utils.plotting import Annotator # ultralytics.yolo.utils.plotting is deprecated
model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
_, img = cap.read()
# BGR to RGB conversion is performed under the hood
# see: https://github.com/ultralytics/ultralytics/issues/2575
results = model.predict(img)
for r in results:
annotator = Annotator(img)
boxes = r.boxes
for box in boxes:
b = box.xyxy[0] # get box coordinates in (left, top, right, bottom) format
c = box.cls
annotator.box_label(b, model.names[int(c)])
img = annotator.result()
cv2.imshow('YOLO V8 Detection', img)
if cv2.waitKey(1) & 0xFF == ord(' '):
break
cap.release()
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
Roy*_*yal 13
您可以使用以下代码获取所有信息:
for result in results:
# detection
result.boxes.xyxy # box with xyxy format, (N, 4)
result.boxes.xywh # box with xywh format, (N, 4)
result.boxes.xyxyn # box with xyxy format but normalized, (N, 4)
result.boxes.xywhn # box with xywh format but normalized, (N, 4)
result.boxes.conf # confidence score, (N, 1)
result.boxes.cls # cls, (N, 1)
# segmentation
result.masks.masks # masks, (N, H, W)
result.masks.segments # bounding coordinates of masks, List[segment] * N
# classification
result.probs # cls prob, (num_class, )
Run Code Online (Sandbox Code Playgroud)
您可以在文档中进一步阅读。
归档时间: |
|
查看次数: |
30293 次 |
最近记录: |