zx8*_*754 3 r coalesce dplyr rowwise
我们如何在不指定列名的情况下使用dplyr ( tidyverse ) 为所有列获取第一个非缺失值 -合并- 行方式?
示例数据:
df <- data.frame(x = c(NA, "s3", NA, NA,"s4"),
y = c("s1", NA, "s6", "s7", "s4"),
z = c("s1", NA, NA, "s7", NA))
Run Code Online (Sandbox Code Playgroud)
我们可以使用do.call,但这看起来不太整洁:
df$xyz <- do.call(coalesce, df)
# x y z xyz
# 1 <NA> s1 s1 s1
# 2 s3 <NA> <NA> s3
# 3 <NA> s6 <NA> s6
# 4 <NA> s7 s7 s7
# 5 s4 s4 <NA> s4
Run Code Online (Sandbox Code Playgroud)
这可行,但我不想指定列:
df %>%
mutate(xyz = coalesce(x, y, z))
# x y z xyz
# 1 <NA> s1 s1 s1
# 2 s3 <NA> <NA> s3
# 3 <NA> s6 <NA> s6
# 4 <NA> s7 s7 s7
# 5 s4 s4 <NA> s4
Run Code Online (Sandbox Code Playgroud)
类似于data.table:
library(data.table)
setDT(df)[, xyz := fcoalesce(.SD) ][]
# x y z xyz
# 1: <NA> s1 s1 s1
# 2: s3 <NA> <NA> s3
# 3: <NA> s6 <NA> s6
# 4: <NA> s7 s7 s7
# 5: s4 s4 <NA> s4
Run Code Online (Sandbox Code Playgroud)
失败的尝试:
df %>%
mutate(xyz = coalesce(all_vars()))
df %>%
mutate(xyz = coalesce(c_across(all_vars())))
df %>%
rowwise() %>%
mutate(xyz = coalesce(all_vars()))
df %>%
rowwise() %>%
mutate(xyz = coalesce(c_across(all_vars())))
Run Code Online (Sandbox Code Playgroud)
有任何想法吗?
摘自此GitHub 讨论,您可以创建一个coacross
函数:
coacross <- function(...) {
coalesce(!!!across(...))
}
df %>%
mutate(xyz = coacross(everything()))
x y z xyz
1 <NA> s1 s1 s1
2 s3 <NA> <NA> s3
3 <NA> s6 <NA> s6
4 <NA> s7 s7 s7
5 s4 s4 <NA> s4
Run Code Online (Sandbox Code Playgroud)