按行合并所有列

zx8*_*754 3 r coalesce dplyr rowwise

我们如何在不指定列名的情况下使用dplyr ( tidyverse ) 为所有列获取第一个非缺失值 -合并- 行方式?

示例数据:

df <- data.frame(x = c(NA, "s3", NA, NA,"s4"),
                 y = c("s1", NA, "s6", "s7", "s4"),
                 z = c("s1", NA, NA, "s7", NA))
Run Code Online (Sandbox Code Playgroud)

我们可以使用do.call,但这看起来不太整洁:

df$xyz <- do.call(coalesce, df)
#      x    y    z xyz
# 1 <NA>   s1   s1  s1
# 2   s3 <NA> <NA>  s3
# 3 <NA>   s6 <NA>  s6
# 4 <NA>   s7   s7  s7
# 5   s4   s4 <NA>  s4
Run Code Online (Sandbox Code Playgroud)

这可行,但我不想指定列:

df %>% 
  mutate(xyz = coalesce(x, y, z))
#      x    y    z xyz
# 1 <NA>   s1   s1  s1
# 2   s3 <NA> <NA>  s3
# 3 <NA>   s6 <NA>  s6
# 4 <NA>   s7   s7  s7
# 5   s4   s4 <NA>  s4
Run Code Online (Sandbox Code Playgroud)

类似于data.table

library(data.table)
setDT(df)[, xyz := fcoalesce(.SD) ][]
#       x    y    z xyz
# 1: <NA>   s1   s1  s1
# 2:   s3 <NA> <NA>  s3
# 3: <NA>   s6 <NA>  s6
# 4: <NA>   s7   s7  s7
# 5:   s4   s4 <NA>  s4
Run Code Online (Sandbox Code Playgroud)

失败的尝试:

df %>% 
  mutate(xyz = coalesce(all_vars()))

df %>% 
  mutate(xyz = coalesce(c_across(all_vars())))

df %>% 
  rowwise() %>% 
  mutate(xyz = coalesce(all_vars()))

df %>% 
  rowwise() %>% 
  mutate(xyz = coalesce(c_across(all_vars())))
Run Code Online (Sandbox Code Playgroud)

有任何想法吗?

Maë*_*aël 6

摘自此GitHub 讨论,您可以创建一个coacross函数:

coacross <- function(...) {
  coalesce(!!!across(...))
}

df %>% 
  mutate(xyz = coacross(everything()))

     x    y    z xyz
1 <NA>   s1   s1  s1
2   s3 <NA> <NA>  s3
3 <NA>   s6 <NA>  s6
4 <NA>   s7   s7  s7
5   s4   s4 <NA>  s4
Run Code Online (Sandbox Code Playgroud)