gur*_*eri 5 python object-detection yolo
我只想在我的 python 脚本中获取类数据,例如:人、汽车、卡车、狗 ,但我的输出不止于此。我也不能将结果用作字符串。
Python脚本:
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
results = model.predict(source="0")
Run Code Online (Sandbox Code Playgroud)
输出:
0: 480x640 1 person, 1 car, 7.1ms
0: 480x640 1 person, 1 car, 7.2ms
0: 480x640 1 person, 1 car, 7.1ms
0: 480x640 1 person, 1 car, 7.1ms
0: 480x640 1 person, 1 car, 7.1ms
0: 480x640 1 person, 7.9ms
0: 480x640 1 person, 7.1ms
0: 480x640 1 person, 1 car, 7.1ms
0: 480x640 1 person, 1 car, 7.1ms
Run Code Online (Sandbox Code Playgroud)
Mik*_*e B 16
您可以将每个类传递给模型的名称字典,如下所示:
from ultralytics.yolo.engine.model import YOLO
model = YOLO("yolov8n.pt")
results = model.predict(stream=True, imgsz=512) # source already setup
names = model.names
for r in results:
for c in r.boxes.cls:
print(names[int(c)])
Run Code Online (Sandbox Code Playgroud)
输出:
YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs
bus
person
person
person
person
image 1/2 /home/xyz/ultralytics/ultralytics/assets/bus.jpg: 512x384 4 persons, 1 bus, 35.7ms
person
person
person
tie
tie
image 2/2 /home/xyz/ultralytics/ultralytics/assets/zidane.jpg: 288x512 3 persons, 2 ties, 199.0ms
Speed: 3.9ms pre-process, 117.4ms inference, 27.9ms postprocess per image at shape (1, 3, 512, 512)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
12744 次 |
最近记录: |