500*_*500 7 wolfram-mathematica bin
基于Sjoerd,使用Mathematica从笛卡尔图到极坐标图的优秀解决方案和扩展,请考虑以下内容:
list = {{21, 16}, {16, 14}, {11, 11}, {11, 12},
{13, 15}, {18, 17}, {19, 11}, {17, 16}, {16, 19}}
ScreenCenter = {20, 15}
ListPolarPlot[{ArcTan[##], EuclideanDistance[##]} & @@@ (# - ScreenCenter & /@ list),
PolarAxes -> True, PolarGridLines -> Automatic, Joined -> False,
PolarTicks -> {"Degrees", Automatic},
BaseStyle -> {FontFamily -> "Arial", FontWeight -> Bold,
FontSize -> 12}, PlotStyle -> {Red, PointSize -> 0.02}]
Run Code Online (Sandbox Code Playgroud)
Module[{Countz, maxScale, angleDivisions, dAng},
Countz = Reverse[BinCounts[Flatten@Map[ArcTan[#[[1]] - ScreenCenter[[1]], #[[2]] -
ScreenCenter[[2]]] &, list, {1}], {-\[Pi], \[Pi], \[Pi]/6}]];
maxScale = 4;
angleDivisions = 12;
dAng = (2 \[Pi])/angleDivisions;
SectorChart[{ConstantArray[1, Length[Countz]], Countz}\[Transpose],
SectorOrigin -> {-\[Pi]/angleDivisions, "Counterclockwise"},
PolarAxes -> True,
PolarGridLines -> Automatic,
PolarTicks -> {Table[{i \[Degree] + \[Pi]/angleDivisions,i \[Degree]},
{i, 0, 345, 30}], Automatic},
ChartStyle -> {Directive[EdgeForm[{Black, Thickness[0.005]}], Red]},
BaseStyle -> {FontFamily -> "Arial", FontWeight -> Bold,
FontSize -> 12}, ImageSize -> 400]]
Run Code Online (Sandbox Code Playgroud)
如您所见,直方图显示了旋转对称性.我尝试了一切,以获得那些直,但没有成功.没有反向,这是最糟糕的.我试过RotateRight没有成功.我觉得问题出在我的BinCount中.ArcTan从-Pi输出到Pi,而Sjoerd建议我需要从0到2Pi.但我不明白该怎么做.
编辑:问题解决了.感谢Sjoerd,Belisarius,Heike解决方案,我能够在给定图像重心的情况下显示眼睛固定位置的直方图.
刚刚检查,但你的第一个情节似乎有缺陷:
list = {{21, 16}, {16, 14}, {11, 11}, {11, 12}, {13, 15},
{18, 17}, {19, 11}, {17, 16}, {16, 19}};
ScreenCenter = {20, 15};
Show[ListPlot[list, PlotStyle -> Directive[PointSize[Medium], Purple]],
Graphics[
{Red, PointSize[Large], Point[ScreenCenter],
Circle[ScreenCenter, 10]}],
AspectRatio -> 1, Axes -> False]
Run Code Online (Sandbox Code Playgroud)
ListPolarPlot[{ArcTan[Sequence @@ ##], Norm[##]} &/@ (#-ScreenCenter & /@ list),
PolarAxes -> True,
PolarGridLines -> Automatic,
Joined -> False,
PolarTicks -> {"Degrees", Automatic},
BaseStyle -> {FontFamily -> "Arial", FontWeight -> Bold, FontSize -> 12},
PlotStyle -> {Red, PointSize -> 0.02}]
Run Code Online (Sandbox Code Playgroud)
编辑
我没有按照你的所有代码,但屏幕中心的反思似乎解决了这个问题:
Module[{Countz, maxScale, angleDivisions, dAng},
Countz = BinCounts[
{ArcTan[Sequence @@ ##]} & /@ (# + ScreenCenter & /@ -list),
{-Pi, Pi, Pi/6}];
maxScale = 4;
angleDivisions = 12;
dAng = (2 Pi)/angleDivisions;
SectorChart[{ConstantArray[1, Length[Countz]], Countz}\[Transpose],
SectorOrigin -> {-Pi/angleDivisions, "Counterclockwise"},
PolarAxes -> True,
PolarGridLines -> Automatic,
PolarTicks -> {Table[{i \[Degree] + Pi/angleDivisions,
i \[Degree]}, {i, 0, 345, 30}], Automatic},
ChartStyle -> {Directive[EdgeForm[{Black, Thickness[0.005]}], Red]},
BaseStyle -> {FontFamily -> "Arial", FontWeight -> Bold,
FontSize -> 12},
ImageSize -> 400]]
Run Code Online (Sandbox Code Playgroud)
编辑
在这里你可能会看到我的代码中的小错位,这是在Heike的答案中解决的(投票给它!)
Show[Module[{Countz, maxScale, angleDivisions, dAng},
Countz = BinCounts[{ArcTan[
Sequence @@ ##]} & /@ (# +
ScreenCenter & /@ -list), {-\[Pi], \[Pi], \[Pi]/6}];
maxScale = 4;
angleDivisions = 12;
dAng = (2 \[Pi])/angleDivisions;
SectorChart[{ConstantArray[1, Length[Countz]], Countz}\[Transpose],
SectorOrigin -> {-\[Pi]/angleDivisions, "Counterclockwise"},
PolarAxes -> True, PolarGridLines -> Automatic,
PolarTicks -> {Table[{i \[Degree] + \[Pi]/angleDivisions,
i \[Degree]}, {i, 0, 345, 30}], Automatic},
ChartStyle -> {Directive[EdgeForm[{Black, Thickness[0.005]}],
Red]}, BaseStyle -> {FontFamily -> "Arial", FontWeight -> Bold,
FontSize -> 12}, ImageSize -> 400]],
ListPlot[Plus[# - ScreenCenter] & /@ list/2.5,
PlotMarkers -> Image[CrossMatrix[10], ImageSize -> 10]]
]
Run Code Online (Sandbox Code Playgroud)
您可以使用该ChartElementFunction
选项准确定位扇区.第一个参数ChartElementFunction
是形式{{angleMin, angleMax}, {rMin,rMax}}
.第一个扇区有界限{angleMin, angleMax} = {-Pi/12, Pi/12}
,第二个界面{Pi/12, 3 Pi/12}
等等.因此,要获得正确的旋转,你可以做类似的事情
Module[{Countz, maxScale, angleDivisions, dAng},
maxScale = 4;
angleDivisions = 12;
dAng = (2 \[Pi])/angleDivisions;
Countz = BinCounts[
Flatten@Map[ArcTan @@ (# - ScreenCenter) &, list, {1}],
{-Pi, Pi, dAng}];
SectorChart[{ConstantArray[1, Length[Countz]], Countz}\[Transpose],
SectorOrigin -> {-\[Pi]/angleDivisions, "Counterclockwise"},
PolarAxes -> True, PolarGridLines -> Automatic,
PolarTicks -> {Table[{i \[Degree] + \[Pi]/angleDivisions,
i \[Degree]}, {i, 0, 345, 30}], Automatic},
ChartStyle -> {Directive[EdgeForm[{Black, Thickness[0.005]}], Red]},
BaseStyle -> {FontFamily -> "Arial", FontWeight -> Bold, FontSize -> 12},
ImageSize -> 400,
ChartElementFunction ->
Function[{range}, Disk[{0, 0}, range[[2, 2]], - 11 Pi/12 + range[[1]]]]]]
Run Code Online (Sandbox Code Playgroud)