use*_*432 7 memory merge memory-management r dataframe
我试图合并两个相当大的 - 但不是荒谬的(360,000 X 4,57,000 X 4) - 一个公共ID的数据集.我已经尝试了常规merge()
,merge.data.table()
和sqldf()
.每次我的内存耗尽(cannot allocate vector of size...
).这有什么解决方案吗?或者R是合并数据的坏工具吗?head()
给出如下(我想在STUDENT.NAME上合并):
ID10 STUDENT.NAME FATHER.NAME MOTHER.NAME
1 1 DEEKSHITH J JAYANNA SWARNA
2 4 MANIKANTHA D DEVARAJ MANJULA
3 5 NAGESH T THIMMAIAH N SHIVAMMA
4 6 NIZAMUDDIN R NOOR MOHAMMED BIBI
5 7 PRABHU YELLAPPA YELLAPPA MALLAMMA
6 8 SADDAM PASHA NISAR AHMED ZAREENA
Run Code Online (Sandbox Code Playgroud)
Jor*_*eys 11
从你的问题的本质来看,你必须做一个多对多的合并,每个学生在每个数据框中都会多次出现.您可能想要查看多少次.如果每个学生在每个数据框中出现两次,这意味着一个学生将产生4行.如果学生出现10次,合并将增加100行.首先检查你会得到多少行.这是我用于此的功能:
count.rows <- function(x,y,v,all=FALSE){
tx <- table(x[[v]])
ty <- table(y[[v]])
val <- val <- names(tx)[match(names(tx),names(ty),0L) > 0L]
cts <- rbind(tx[match(val,names(tx))],ty[match(val,names(ty))])
colnames(cts) <- val
sum(apply(cts,2,prod,na.rm=all),na.rm=TRUE)
}
count.rows(DF1,DF2,"STUDENT.NAME")
Run Code Online (Sandbox Code Playgroud)
如果你按照你的要求做的(阅读R文档),你会发现复杂性取决于答案的长度.这不是由于合并算法本身,而是将所有结果绑定在一起.如果你真的想要一个内存较少的解决方案,你需要特别摆脱这种绑定.以下算法为您做到了这一点.我把它写出来,你可以找到逻辑,它可以被优化.请注意,它不会给出相同的结果,它会复制两个数据帧的所有列.所以你可能想要适应一点.
mymerge <- function(x,y,v,count.only=FALSE){
ix <- match(v,names(x))
iy <- match(v,names(y))
xx <- x[,ix]
yy <- y[,iy]
ox <- order(xx)
oy <- order(yy)
xx <- xx[ox]
yy <- yy[oy]
nx <- length(xx)
ny <- length(yy)
val <- unique(xx)
val <- val[match(val,yy,0L) > 0L]
cts <- cbind(table(xx)[val],table(yy)[val])
dimr <- sum(apply(cts,1,prod),na.rm=TRUE)
idx <- vector("numeric",dimr)
idy <- vector("numeric",dimr)
ndx <- embed(c(which(!duplicated(xx)),nx+1),2)[unique(xx) %in% val,]
ndy <- embed(c(which(!duplicated(yy)),ny+1),2)[unique(yy) %in% val,]
count = 1
for(i in 1:nrow(ndx)){
nx <- abs(diff(ndx[i,]))
ny <- abs(diff(ndy[i,]))
ll <- nx*ny
idx[count:(count+ll-1)] <-
rep(ndx[i,2]:(ndx[i,1]-1),ny)
idy[count:(count+ll-1)] <-
rep(ndy[i,2]:(ndy[i,1]-1),each=nx)
count <- count+ll
}
x <- x[ox[idx],]
names(y) <- paste("y.",names(y),sep="")
x[names(y)] <- y[oy[idy],]
rownames(x) <- 1:nrow(x)
x
}
Run Code Online (Sandbox Code Playgroud)
一些测试代码,所以你可以看到它工作:
DF1 <- data.frame(
ID = 1:10,
STUDENT.NAME=letters[1:10],
SCORE = 1:10
)
id <- c(3,11,4,6,6,12,1,4,7,10,5,3)
DF2 <- data.frame(
ID = id,
STUDENT.NAME=letters[id],
SCORE = 1:12
)
mymerge(DF1,DF2,"STUDENT.NAME")
Run Code Online (Sandbox Code Playgroud)
使用50万行和4列的两个数据帧(每个学生名称最多10个匹配)执行相同的操作,它返回一个包含580万行和8列的数据帧,并在内存中显示以下图片:
黄色框是合并调用,绿色框是mymerge调用.内存范围从2.3Gb到3.74Gb,因此合并调用使用1.45 Gb,mymerge使用超过0.8 Gb.仍然没有"内存不足"错误......测试代码如下:
Names <- sapply(
replicate(120000,sample(letters,4,TRUE),simplify=FALSE),
paste,collapse="")
DF1 <- data.frame(
ID10 = 1:500000,
STUDENT.NAME = sample(Names[1:50000],500000,TRUE),
FATHER.NAME = sample(letters,500000,TRUE),
SCORE1 = rnorm(500000),
stringsAsFactors=FALSE
)
id <- sample(500000,replace=TRUE)
DF2 <- data.frame(
ID20 = DF1$ID10,
STUDENT.NAME = DF1$STUDENT.NAME[id],
SCORE = rnorm(500000),
SCORE2= rnorm(500000),
stringsAsFactors=FALSE
)
id2 <- sample(500000,20000)
DF2$STUDENT.NAME[id2] <- sample(Names[100001:120000],20000,TRUE)
gc()
system.time(X <- merge(DF1,DF2,"STUDENT.NAME"))
Sys.sleep(1)
gc()
Sys.sleep(1)
rm(X)
gc()
Sys.sleep(3)
system.time(X <- mymerge(DF1,DF2,"STUDENT.NAME"))
Sys.sleep(1)
gc()
rm(X)
gc()
Run Code Online (Sandbox Code Playgroud)