R dplyr 以编程方式识别列

Bar*_*art 5 r dplyr nse tidyeval

对于某些对象,属性标识特殊列,例如对象中的几何列sf。为了在其中进行一些计算,dplyr最好能够轻松识别这些列。我正在寻找一种方法来创建一个有助于识别此列的函数。在下面的示例中,我可以创建一个函数来标识该列,但我仍然需要使用rlang拼接运算符 ( !!!)。

\n
require(sf)\nrequire(dplyr)\nn<-4\ndf = st_as_sf(data.frame(x = 1:n, y = 1:n, cat=gl(2,2)), coords = 1:2, crs = 3857) %>% group_by(cat)\n# this is the example I start from however the geometry column is not guaranteed to have that name\ndf %>% mutate(d=st_distance(geometry, geometry[row_number()==1]))\n#> Simple feature collection with 4 features and 2 fields\n#> Geometry type: POINT\n#> Dimension:     XY\n#> Bounding box:  xmin: 1 ymin: 1 xmax: 4 ymax: 4\n#> Projected CRS: WGS 84 / Pseudo-Mercator\n#> # A tibble: 4 \xc3\x97 3\n#> # Groups:   cat [2]\n#>   cat      geometry d[,1]\n#> * <fct> <POINT [m]>   [m]\n#> 1 1           (1 1)  0   \n#> 2 1           (2 2)  1.41\n#> 3 2           (3 3)  0   \n#> 4 2           (4 4)  1.41\n# this works, however the code does not get easier to read\ndf %>% mutate(d=st_distance(!!!syms(attr(., "sf_column")), (!!!syms(attr(., "sf_column")))[row_number()==1]))\n#> Simple feature collection with 4 features and 2 fields\n#> ...\n#> 4 2           (4 4)  1.41\n# this works and is already better:\ngeometry_name<-function(x) syms(attr(x, \'sf_column\'))\ndf %>% mutate(d=st_distance(!!!geometry_name(.), (!!!geometry_name(.))[row_number()==1]))\n#> Simple feature collection with 4 features and 2 fields\n#> ...  \n#> 4 2           (4 4)  1.41\n
Run Code Online (Sandbox Code Playgroud)\n

理想情况下,我想找到一个使以下代码工作的函数,因为这对用户来说最简单:

\n
df %>% mutate(d=st_distance(geometry_name(), geometry_name()[row_number()==1]))\n
Run Code Online (Sandbox Code Playgroud)\n

All*_*ron 6

调用这种不带参数的函数要求您假设调用框架中存在符号(在本例中为占位.符和.data代词),因此它在动词之外无法正常工作dplyr,但如果这适合您的工作流程,那么您可以做:

geometry_name <- function() {
  .data <- eval(quote(.data), parent.frame())
  nms <- names(eval(quote(.), parent.frame()))
  geo <- which(sapply(nms, function(x) inherits(.data[[x]], 'sfc')))
  if(length(geo) == 0) {
    stop('No geometry column detected')
  }
  if(length(geo) > 1) {
    warning('More than one geometry column. Only the first will be used.')
    geo <- geo[1]
  }
  .data[[nms[geo]]]
}
Run Code Online (Sandbox Code Playgroud)

使用您的示例,这允许您使用指定的语法:

df %>% 
  mutate(d = st_distance(geometry_name(), geometry_name()[row_number()==1]))
#> Simple feature collection with 4 features and 2 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: 1 ymin: 1 xmax: 4 ymax: 4
#> Projected CRS: WGS 84 / Pseudo-Mercator
#> # A tibble: 4 x 3
#> # Groups:   cat [2]
#>   cat      geometry d[,1]
#> * <fct> <POINT [m]>   [m]
#> 1 1           (1 1)  0   
#> 2 1           (2 2)  1.41
#> 3 2           (3 3)  0   
#> 4 2           (4 4)  1.41
Run Code Online (Sandbox Code Playgroud)

您可以通过允许该函数接受一个data参数来使该函数更有用,该参数如果运行上面的代码(在检查和 的missing存在之后),但否则只是查找并返回来自 的列。这将允许在动词之外使用,但保留内部所需的行为。..datasfdatadplyrdplyr

例如:

geometry_name <- function(data) {
  if(missing(data)) {
    .data <- tryCatch( { 
      eval(quote(.data), parent.frame())
    }, error = function(e){ 
      stop("Argument 'data' missing, with no default")
    })
    plchlder <- tryCatch({
      eval(quote(.), parent.frame())
    }, error = function(e) {
      stop("geometry_name can only be used without a 'data' argument ",
           "inside dplyr verbs")
    })
    nms <- names(plchlder)
    geo <- which(sapply(nms, function(x) inherits(.data[[x]], 'sfc')))
    if(length(geo) == 0) {
      stop('No geometry column detected')
    }
    if(length(geo) > 1) {
      warning('More than one geometry column. Only the first will be used.')
      geo <- geo[1]
    }
    return(.data[[nms[geo]]])
  }
  
  geo <- which(sapply(data, function(x) inherits(x, 'sfc')))
  if(length(geo) == 0) stop('No geometry column detected')
  if(length(geo) > 1) {
    warning('More than one geometry column. Only the first will be used.')
    geo <- geo[1]
  }
  return(data[[geo]])
}
Run Code Online (Sandbox Code Playgroud)

这给出了以下行为

geometry_name(df)
#> [1] "geometry"

geometry_name()
#> Error in value[[3L]](cond) : 
#>   geometry_name can only be used without a 'data' argument inside 
#>   dplyr verbs

df %>% 
  mutate(d = st_distance(geometry_name(), geometry_name()[row_number()==1]))
#> Simple feature collection with 4 features and 2 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: 1 ymin: 1 xmax: 4 ymax: 4
#> Projected CRS: WGS 84 / Pseudo-Mercator
#> # A tibble: 4 x 3
#> # Groups:   cat [2]
#>   cat      geometry d[,1]
#> * <fct> <POINT [m]>   [m]
#> 1 1           (1 1)  0   
#> 2 1           (2 2)  1.41
#> 3 2           (3 3)  0   
#> 4 2           (4 4)  1.41
Run Code Online (Sandbox Code Playgroud)