学习 MNIST 数据库时的准确率非常低 (0.2)

Ann*_*nna 6 python machine-learning neural-network mnist

我正在从头开始开发我的 ANN ,它应该对手写数字 (0-9) 的MNIST 数据库进行分类。我的前馈全连接人工神经网络必须由以下部分组成:

  1. 一个输入层,有28x28 = 784节点(即每张图像的特征)
  2. 一个隐藏层,具有任意数量的神经元(浅层网络)
  3. 一个输出层,带有10节点(每个数字一个)

并且必须通过反向传播算法计算梯度 wrt 权重和偏差,最后,它应该学习利用动量算法的梯度下降

损失函数是:cross_entropy在“ softmaxed”网络的输出上,因为任务是关于分类的

每个隐藏神经元都由相同的激活函数激活,我选择了sigmoid;同时输出的神经元被该identity函数激活。

数据集已分为:

  1. 60.000训练对(image, label)- 用于训练
  2. 5000验证对(image, label)- 用于评估并选择最小化验证损失的网络
  3. 5000测试对(image, label)- 用于测试使用新指标(例如准确性)选择的模型

数据已通过调用sklearn.utils.shuffle方法进行打乱。

这些是我的网络在训练损失、验证损失和验证准确性方面的表现:

E(0) on TrS is: 798288.7537714319  on VS is: 54096.50409967187  Accuracy: 12.1 %
E(1) on TrS is: 798261.8584179751  on VS is: 54097.23663558976  Accuracy: 12.1 %
...
E(8) on TrS is: 798252.1191081362  on VS is: 54095.5016235736  Accuracy: 12.1 %
...
E(17) on TrS is: 798165.2674011206  on VS is: 54087.2823473459  Accuracy: 12.8 %
E(18) on TrS is: 798155.0888987815  on VS is: 54086.454077456074  Accuracy: 13.22 %
...
E(32) on TrS is: 798042.8283810444  on VS is: 54076.35518400717  Accuracy: 19.0 %
E(33) on TrS is: 798033.2512910366  on VS is: 54075.482037626025  Accuracy: 19.36 %
E(34) on TrS is: 798023.431899881  on VS is: 54074.591145985265  Accuracy: 19.64 %
E(35) on TrS is: 798013.4023181734  on VS is: 54073.685418577166  Accuracy: 19.759999999999998 %
E(36) on TrS is: 798003.1960815473  on VS is: 54072.76783050559  Accuracy: 20.080000000000002 %
...
E(47) on TrS is: 797888.8213232228  on VS is: 54062.70342708315  Accuracy: 21.22 %
E(48) on TrS is: 797879.005388998  on VS is: 54061.854566864626  Accuracy: 21.240000000000002 %
E(49) on TrS is: 797869.3890292909  on VS is: 54061.02482142968  Accuracy: 21.26 %
Validation loss is minimum at epoch: 49
Run Code Online (Sandbox Code Playgroud)

训练和验证损失

训练损失

验证损失

正如你所看到的,损失非常高并且学习非常慢。

这是我的代码:

import numpy as np
from scipy.special import expit
from matplotlib import pyplot as plt
from mnist.loader import MNIST
from sklearn.utils import shuffle


def relu(a, derivative=False):
    f_a = np.maximum(0, a)
    if derivative:
        return (a > 0) * 1
    return f_a  

def softmax(y):
    e_y = np.exp(y - np.max(y, axis=0))
    return e_y / np.sum(e_y, axis=0)

def cross_entropy(y, t, derivative=False, post_process=True):
    epsilon = 10 ** -308
    if post_process:
        if derivative:
            return y - t
        sm = softmax(y)
        sm = np.clip(sm, epsilon, 1 - epsilon)  # avoids log(0)
        return -np.sum(np.sum(np.multiply(t, np.log(sm)), axis=0))

def sigmoid(a, derivative=False):
    f_a = expit(a)
    if derivative:
        return np.multiply(f_a, (1 - f_a))
    return f_a

def identity(a, derivative=False):
    f_a = a
    if derivative:
        return np.ones(np.shape(a))
    return f_a

def accuracy_score(targets, predictions):
    correct_predictions = 0
    for item in range(np.shape(predictions)[1]):
        argmax_idx = np.argmax(predictions[:, item])
        if targets[argmax_idx, item] == 1:
            correct_predictions += 1
    return correct_predictions / np.shape(predictions)[1]


def one_hot(targets):
    return np.asmatrix(np.eye(10)[targets]).T


def plot(epochs, loss_train, loss_val):
    plt.plot(epochs, loss_train)
    plt.plot(epochs, loss_val, color="orange")
    plt.legend(["Training Loss", "Validation Loss"])
    plt.xlabel("Epochs")
    plt.ylabel("Loss")
    plt.grid(True)
    plt.show()

class NeuralNetwork:

    def __init__(self):
        self.layers = []

    def add_layer(self, layer):
        self.layers.append(layer)

    def build(self):
        for i, layer in enumerate(self.layers):
            if i == 0:
                layer.type = "input"
            else:
                layer.type = "output" if i == len(self.layers) - 1 else "hidden"
                layer.configure(self.layers[i - 1].neurons)

    def fit(self, X_train, targets_train, X_val, targets_val, max_epochs=50):
        e_loss_train = []
        e_loss_val = []

        # Getting the minimum loss on validation set
        predictions_val = self.predict(X_val)
        min_loss_val = cross_entropy(predictions_val, targets_val)

        best_net = self  # net which minimize validation loss
        best_epoch = 0  # epoch where the validation loss is minimum

        # batch mode
        for epoch in range(max_epochs):
            predictions_train = self.predict(X_train)
            self.back_prop(targets_train, cross_entropy)
            self.learning_rule(l_rate=0.00001, momentum=0.9)
            loss_train = cross_entropy(predictions_train, targets_train)
            e_loss_train.append(loss_train)

            # Validation
            predictions_val = self.predict(X_val)
            loss_val = cross_entropy(predictions_val, targets_val)
            e_loss_val.append(loss_val)

            print("E(%d) on TrS is:" % epoch, loss_train, " on VS is:", loss_val, " Accuracy:",
                  accuracy_score(targets_val, predictions_val) * 100, "%")

            if loss_val < min_loss_val:
                min_loss_val = loss_val
                best_epoch = epoch
                best_net = self
  
        plot(np.arange(max_epochs), e_loss_train, e_loss_val)

        return best_net

    # Matrix of predictions where the i-th column corresponds to the i-th item
    def predict(self, dataset):
        z = dataset.T
        for layer in self.layers:
            z = layer.forward_prop_step(z)
        return z

    def back_prop(self, target, loss):
        for i, layer in enumerate(self.layers[:0:-1]):
            next_layer = self.layers[-i]
            prev_layer = self.layers[-i - 2]
            layer.back_prop_step(next_layer, prev_layer, target, loss)

    def learning_rule(self, l_rate, momentum):
        # Momentum GD
        for layer in [layer for layer in self.layers if layer.type != "input"]:
            layer.update_weights(l_rate, momentum)
            layer.update_bias(l_rate, momentum)


class Layer:

    def __init__(self, neurons, type=None, activation=None):
        self.dE_dW = None  # derivatives dE/dW where W is the weights matrix
        self.dE_db = None  # derivatives dE/db where b is the bias
        self.dact_a = None  # derivative of the activation function
        self.out = None  # layer output
        self.weights = None  # input weights
        self.bias = None  # layer bias
        self.w_sum = None  # weighted_sum
        self.neurons = neurons  # number of neurons
        self.type = type  # input, hidden or output
        self.activation = activation  # activation function
        self.deltas = None  # for back-prop

    def configure(self, prev_layer_neurons):
        self.set_activation()
        self.weights = np.asmatrix(np.random.normal(-0.1, 0.02, (self.neurons, prev_layer_neurons)))
        self.bias = np.asmatrix(np.random.normal(-0.1, 0.02, self.neurons)).T 


    def set_activation(self):
        if self.activation is None:
            if self.type == "hidden":
                self.activation = sigmoid
            elif self.type == "output":
                self.activation = identity  # will be softmax in cross entropy calculation

    def forward_prop_step(self, z):
        if self.type == "input":
            self.out = z
        else:
            self.w_sum = np.dot(self.weights, z) + self.bias
            self.out = self.activation(self.w_sum)
        return self.out

    def back_prop_step(self, next_layer, prev_layer, target, local_loss):
        if self.type == "output":
            self.dact_a = self.activation(self.w_sum, derivative=True)
            self.deltas = np.multiply(self.dact_a,
                                      local_loss(self.out, target, derivative=True))
        else:
            self.dact_a = self.activation(self.w_sum, derivative=True)  # (m,batch_size)
            self.deltas = np.multiply(self.dact_a, np.dot(next_layer.weights.T, next_layer.deltas))

        self.dE_dW = self.deltas * prev_layer.out.T

        self.dE_db = np.sum(self.deltas, axis=1)

    def update_weights(self, l_rate, momentum):
        # Momentum GD
        self.weights = self.weights - l_rate * self.dE_dW
        self.weights = -l_rate * self.dE_dW + momentum * self.weights

    def update_bias(self, l_rate, momentum):
        # Momentum GD
        self.bias = self.bias - l_rate * self.dE_db
        self.bias = -l_rate * self.dE_db + momentum * self.bias


if __name__ == '__main__':
    mndata = MNIST(path="data", return_type="numpy")
    X_train, targets_train = mndata.load_training()  # 60.000 images, 28*28 features
    X_val, targets_val = mndata.load_testing()  # 10.000 images, 28*28 features

    X_train = X_train / 255  # normalization within [0;1]
    X_val = X_val / 255  # normalization within [0;1]

    X_train, targets_train = shuffle(X_train, targets_train.T)
    X_val, targets_val = shuffle(X_val, targets_val.T)

    # Getting the test set splitting the validation set in two equal parts
    # Validation set size decreases from 10.000 to 5000 (of course)
    X_val, X_test = np.split(X_val, 2)  # 5000 images, 28*28 features
    targets_val, targets_test = np.split(targets_val, 2)
    X_test, targets_test = shuffle(X_test, targets_test.T)

    targets_train = one_hot(targets_train)
    targets_val = one_hot(targets_val)
    targets_test = one_hot(targets_test)

    net = NeuralNetwork()
    d = np.shape(X_train)[1]  # number of features, 28x28
    c = np.shape(targets_train)[0]  # number of classes, 10

    # Shallow network with 1 hidden neuron
    # That is 784, 1, 10
    for m in (d, 1, c):
        layer = Layer(m)
        net.add_layer(layer)

    net.build()

    best_net = net.fit(X_train, targets_train, X_val, targets_val, max_epochs=50)
Run Code Online (Sandbox Code Playgroud)

我做了什么:

  1. 设置500而不是1隐藏神经元
  2. 添加许多隐藏层
  3. 减少/增加学习率 ( l_rate) 值
  4. 减少/增加momentum(并将其设置为0
  5. sigmoid用。。。来代替relu

但问题仍然存在。

这些是我用于计算的公式(当然你可以从源代码中查看它们):

公式

注:式中f和g分别代表隐藏层激活函数和输出层激活函数。

编辑:

cross_entropy考虑到平均损失,我重新实现了该函数,替换

-np.sum(..., axis=0))

-np.mean(..., axis=0))

现在的损失是可比的。但正如您所看到的,精度低的问题仍然存在:

E(0) on TrS is: 2.3033276613180695  on VS is: 2.3021572339654925  Accuracy: 10.96 %
E(1) on TrS is: 2.3021765614184284  on VS is: 2.302430432090161  Accuracy: 10.96 %
E(2) on TrS is: 2.302371681532198  on VS is: 2.302355601340701  Accuracy: 10.96 %
E(3) on TrS is: 2.3023151858432804  on VS is: 2.302364165840666  Accuracy: 10.96 %
E(4) on TrS is: 2.3023186844504564  on VS is: 2.3023457770291267  Accuracy: 10.96 %
...
E(34) on TrS is: 2.2985702635977137  on VS is: 2.2984384616550875  Accuracy: 18.52 %
E(35) on TrS is: 2.2984081462987076  on VS is: 2.2982663840016873  Accuracy: 18.8 %
E(36) on TrS is: 2.2982422912146845  on VS is: 2.298091144330386  Accuracy: 19.06 %
E(37) on TrS is: 2.2980732333918854  on VS is: 2.2979132918897367  Accuracy: 19.36 %
E(38) on TrS is: 2.297901523346666  on VS is: 2.2977333860658424  Accuracy: 19.68 %
E(39) on TrS is: 2.2977277198903883  on VS is: 2.297551989820155  Accuracy: 19.78 %
...
E(141) on TrS is: 2.291884965880953  on VS is: 2.2917100547472575  Accuracy: 21.08 %
E(142) on TrS is: 2.29188099824872  on VS is: 2.291706280301498  Accuracy: 21.08 %
E(143) on TrS is: 2.2918771014203316  on VS is: 2.291702575667588  Accuracy: 21.08 %
E(144) on TrS is: 2.291873271054674  on VS is: 2.2916989365939067  Accuracy: 21.08 %
E(145) on TrS is: 2.2918695030455183  on VS is: 2.291695359057886  Accuracy: 21.08 %
E(146) on TrS is: 2.291865793508291  on VS is: 2.291691839253129  Accuracy: 21.08 %
E(147) on TrS is: 2.2918621387676166  on VS is: 2.2916883735772675  Accuracy: 21.08 %
E(148) on TrS is: 2.2918585353455745  on VS is: 2.291684958620525  Accuracy: 21.08 %
E(149) on TrS is: 2.2918549799506307  on VS is: 2.291681591154936  Accuracy: 21.08 %
E(150) on TrS is: 2.2918514694672263  on VS is: 2.291678268124199  Accuracy: 21.08 %
...
E(199) on TrS is: 2.2916983481535644  on VS is: 2.2915343016441727  Accuracy: 21.060000000000002 %
Run Code Online (Sandbox Code Playgroud)

损失

为了更好地可视化结果,我增加了到 的MAX_EPOCHS值。50200

小智 2

结合您和其他人提到的更改,我能够让它发挥作用。

请参阅此要点: https://gist.github.com/theevann/77bb863ef260fe633e3e99f68868f116/revisions

所做的更改:

  • 使用统一的初始化(关键)
  • 使用relu激活(关键)
  • 使用更多隐藏层(关键)
  • 评论您的 SGD 动量,因为它似乎不正确(并不重要)
  • 降低你的学习率(不重要)

我没有寻求优化它。显然,使用工作动量 GD、使用 SGD 而不是 GD、取平均值来显示损失并调整架构将是合乎逻辑的(如果不需要)后续步骤。