Fre*_*Foo 22
如果X
你的阵列c
是因素,
X[np.diag_indices_from(X)] /= c
Run Code Online (Sandbox Code Playgroud)
请参阅diag_indices_from
Numpy手册.
kwg*_*man 17
访问方形(n,n)
numpy数组的对角线的快速方法是arr.flat[::n+1]
:
n = 1000
c = 20
a = np.random.rand(n,n)
a[np.diag_indices_from(a)] /= c # 119 microseconds
a.flat[::n+1] /= c # 25.3 microseconds
Run Code Online (Sandbox Code Playgroud)
该np.fill_diagonal
功能是相当快的:
np.fill_diagonal(a, a.diagonal() / c)
Run Code Online (Sandbox Code Playgroud)
a
你的阵列在哪里,c
是你的因素.在我的机器上,这种方法和@ kwgoodman的a.flat[::n+1] /= c
方法一样快,在我看来更清晰(但不是那么光滑).
import numpy as np
import timeit
n = 1000
c = 20
a = np.random.rand(n,n)
a1 = a.copy()
a2 = a.copy()
a3 = a.copy()
t1 = np.zeros(1000)
t2 = np.zeros(1000)
t3 = np.zeros(1000)
for i in range(1000):
start = timeit.default_timer()
a1[np.diag_indices_from(a1)] /= c
stop = timeit.default_timer()
t1[i] = start-stop
start = timeit.default_timer()
a2.flat[::n+1] /= c
stop = timeit.default_timer()
t2[i] = start-stop
start = timeit.default_timer()
np.fill_diagonal(a3,a3.diagonal() / c)
stop = timeit.default_timer()
t3[i] = start-stop
print([t1.mean(), t1.std()])
print([t2.mean(), t2.std()])
print([t3.mean(), t3.std()])
[-4.5693619907979154e-05, 9.3142851395411316e-06]
[-2.338075107036275e-05, 6.7119609571872443e-06]
[-2.3731951987429056e-05, 8.0455946813059586e-06]
Run Code Online (Sandbox Code Playgroud)
所以你可以看到这种np.flat
方法是最快但很少的.当我再运行几次时,有时候fill_diagonal
方法稍快一些.但可读性明智,它可能值得使用fill_diagonal方法.
归档时间: |
|
查看次数: |
6981 次 |
最近记录: |