Moh*_*afa 3 python pytorch tensor
给定一批形状为 (batch, c, h, w) 的图像,我想将其重塑为 (-1, 深度, c, h, w),使得大小为 d 的第 i 个“块”包含帧 i -> i+d。基本上,使用 .view(-1, d, c, h, w) 会将张量重塑为 d 大小的块,其中第一个图像的索引将是 d 的倍数,这不是我想要的。
标量示例:
如果原始张量类似于:
[1,2,3,4,5,6,7,8,9,10,11,12] and d is 2;
Run Code Online (Sandbox Code Playgroud)
view()
会返回:[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]];
但是,我想得到:
[[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12]]
Run Code Online (Sandbox Code Playgroud)
我编写了这个函数来做到这一点:
def chunk_slicing(data, depth):
output = []
for i in range(data.shape[0] - depth+1):
temp = data[i:i+depth]
output.append(temp)
return torch.Tensor(np.array([t.numpy() for t in output]))
Run Code Online (Sandbox Code Playgroud)
但是我需要一个可用作 PyTorch 模型一部分的函数,因为此函数会导致此错误:
RuntimeError: Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.
Run Code Online (Sandbox Code Playgroud)
IIUC,你需要torch.Tensor.unfold
。
import torch
x = torch.arange(1, 13)
x.unfold(dimension = 0,size = 2, step = 1)
Run Code Online (Sandbox Code Playgroud)
tensor([[ 1, 2],
[ 2, 3],
[ 3, 4],
[ 4, 5],
[ 5, 6],
[ 6, 7],
[ 7, 8],
[ 8, 9],
[ 9, 10],
[10, 11],
[11, 12]])
Run Code Online (Sandbox Code Playgroud)
size = 3
另一个带有和 的例子step = 2
。
>>> torch.arange(1, 10).unfold(dimension = 0,size = 3, step = 2)
tensor([[1, 2, 3], # window with size = 3
# step : ---1--2---
[3, 4, 5], # 'step = 2' so start from 3
[5, 6, 7],
[7, 8, 9]])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1552 次 |
最近记录: |