针对包含大量元素(例如 200,000)的列表优化 RapidFuzz

ner*_*erd 1 python python-3.x fuzzywuzzy rapidfuzz

我想在包含 200,000 个元素的列表上运行本文中提到的这段rapidfuzz 代码。我想知道优化它以在 GPU 上更快运行的最佳方法是什么?

在列表中查找具有匹配字符串值及其计数的模糊匹配字符串

import pandas as pd
from rapidfuzz import fuzz

elements = ['vikash', 'vikas', 'Vinod', 'Vikky', 'Akash', 'Vinodh', 'Sachin', 'Salman', 'Ajay', 'Suchin', 'Akash', 'vikahs']

results = [[name, [], 0] for name in elements]

for (i, element) in enumerate(elements):
    for (j, choice) in enumerate(elements[i+1:]):
        if fuzz.ratio(element, choice, score_cutoff=90):
            results[i][2] += 1
            results[i][1].append(choice)
            results[j+i+1][2] += 1
            results[j+i+1][1].append(element)

data = pd.DataFrame(results, columns=['name', 'duplicates', 'duplicate_count'])


Run Code Online (Sandbox Code Playgroud)

预期输出 -

name        duplicates  duplicate_count
0   vikash           [vikas]                1
1    vikas  [vikash, vikahs]                2
2    Vinod          [Vinodh]                1
3    Vikky                []                0
4    Akash           [Akash]                1
5   Vinodh           [Vinod]                1
6   Sachin                []                0
7   Salman                []                0
8     Ajay                []                0
9   Suchin                []                0
10   Akash           [Akash]                1
11  vikahs           [vikas]                1



Run Code Online (Sandbox Code Playgroud)

Vis*_*dev 6

rapidfuzz库具有加速功能,可以利用CPU的并行处理能力来加快处理速度。

workers参数启用并行处理。使用该值workers=-1,您将使用所有可用的核心。

from rapidfuzz.process import cdist

# Calculate distance between all the names
sa = cdist(elements, elements, score_cutoff=90, workers=-1)

duplicates_list = []

for distances in sa:
    # Get indices of duplicates
    indices = np.argwhere(~np.isin(distances, [100, 0])).flatten()
    # Get names from indices
    names = list(map(elements.__getitem__, indices))
    duplicates_list.append(names)

# Create dataframe using the data
df = pd.DataFrame({'name': elements, 'duplicates': duplicates_list})
df['duplicate_count'] = df.duplicates.str.len()
Run Code Online (Sandbox Code Playgroud)

输出

      name        duplicates  duplicate_count
0   vikash           [vikas]                1
1    vikas  [vikash, vikahs]                2
2    Vinod          [Vinodh]                1
3    Vikky                []                0
4    Akash                []                0
5   Vinodh           [Vinod]                1
6   Sachin                []                0
7   Salman                []                0
8     Ajay                []                0
9   Suchin                []                0
10   Akash                []                0
11  vikahs           [vikas]                1
Run Code Online (Sandbox Code Playgroud)