Ran*_*aul 2 java parallel-processing multithreading stream spring-boot
Below is my code in which am trying to parallelize the 4 methods invocations since each method is independent of each other and performs some memory intensive statistical operations.
@EnableAsync
@Configuration
public class Config {
@Bean(name = "threadPoolTaskExecutor")
public Executor threadPoolTaskExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.initialize();
return executor;
}
}
class OrderStatsService{
public CumulativeStats compute() {
log.info("CumulativeResult compute started at " + System.currentTimeMillis() + ", Current Thread Name: " + Thread.currentThread().getName() + ", Current Thread ID: " + Thread.currentThread().getId());
List<Order> orders = getOrders();// API Call to fetch large set of orders size could be around 100k
CumulativeResult cumulativeResult = new CumulativeResult();
CompletableFuture<Long> stats1 = getStats1(orders);
CompletableFuture<List<String>> result2 = getStats2(orders);
CompletableFuture<Double> result3 = getStats3(orders);
CompletableFuture<Map<String,String>> result4 = getStats4(orders);
cumulativeResult.setStats1(stats1);
cumulativeResult.setStats2(stats2);
cumulativeResult.setStats3(stats3);
cumulativeResult.setStats4(stats4);
return cumulativeResult;
}
@Async("threadPoolTaskExecutor")
public CompletableFuture<Long> getStats1(var orders) {
log.info("getStats1 started at " + System.currentTimeMillis() + ", Current Thread Name: " + Thread.currentThread().getName() + ", Current Thread ID: " + Thread.currentThread().getId());
//computes some stats
}
@Async("threadPoolTaskExecutor")
public CompletableFuture<List<String>> getStats2(var orders) {
log.info("getStats2 started at " + System.currentTimeMillis() + ", Current Thread Name: " + Thread.currentThread().getName() + ", Current Thread ID: " + Thread.currentThread().getId());
//computes some stats
}
@Async("threadPoolTaskExecutor")
public CompletableFuture<Double> getStats3(var> orders) {
log.info("getStats3 started at " + System.currentTimeMillis() + ", Current Thread Name: " + Thread.currentThread().getName() + ", Current Thread ID: " + Thread.currentThread().getId());
//computes some stats
}
@Async("threadPoolTaskExecutor")
public CompletableFuture<Map<String,String>> getStats4(var orders) {
log.info("getStats4 started at " + System.currentTimeMillis() + ", Current Thread Name: " + Thread.currentThread().getName() + ", Current Thread ID: " + Thread.currentThread().getId());
//computes some stats
}
}
Run Code Online (Sandbox Code Playgroud)
I'm getting the expected result but noticed that the main thread which is invoking the compute() is executing the other 4 methods getStats1,getStats2,getStats3,getStats4 methods as well.
CumulativeResult compute started at 1655783237437, Current Thread Name: http-nio-8080-exec-1, Current Thread ID: 28
getStats1 started at 1655783238022, Current Thread Name: http-nio-8080-exec-1, Current Thread ID: 28
getStats2 started at 1655783238024, Current Thread Name: http-nio-8080-exec-1, Current Thread ID: 28
getStats3 started at 1655783463062, Current Thread Name: http-nio-8080-exec-1, Current Thread ID: 28
getStats4 started at 1655783238085, Current Thread Name: http-nio-8080-exec-1, Current Thread ID: 28
Run Code Online (Sandbox Code Playgroud)
I thought when we use CompletableFuture for @Async methods with @EnableAsync config those methods would be assigned a new thread for their execution, can someone please explain is this is the expected behavior or not for parallel methods invocation? Is there anything wrong with my config? Or if this is the expected behavior how the parallelism is achieved when we are executing the caller method and the async in same thread?
所需的更改可以在代码中完成。
步骤 1:执行多线程的第一步是正确设置线程池配置。
这是如何设置线程大小的示例
@Configuration
@EnableAsync
public class ThreadPoolConfiguration {
@Bean(name = "taskExecutor")
public ThreadPoolTaskExecutor threadPoolTaskExecutor() {
ThreadPoolTaskExecutor threadPoolTaskExecutor = new ThreadPoolTaskExecutor();
threadPoolTaskExecutor.setThreadNamePrefix("thread-");
threadPoolTaskExecutor.setCorePoolSize(100);
threadPoolTaskExecutor.setMaxPoolSize(120);
threadPoolTaskExecutor.setQueueCapacity(100000);
threadPoolTaskExecutor.initialize();
return threadPoolTaskExecutor;
}
Run Code Online (Sandbox Code Playgroud)
第2步:使用@Async注解
首先,让我们回顾一下规则。
有关@Async的更多信息,您可以通过
解决方案:
@Async("taskExecutor")任何一种方法都适合您。
| 归档时间: |
|
| 查看次数: |
1113 次 |
| 最近记录: |