Matlab中的张量收缩

nib*_*bot 5 matlab matrix vectorization matrix-multiplication

可能重复:
MATLAB:如何向量乘两个矩阵数组?

有没有办法在Matlab中签订高维张量?

例如,假设我有两个三维数组,具有以下大小:

size(A) == [M,N,P]
size(B) == [N,Q,P]
Run Code Online (Sandbox Code Playgroud)

我想承包AB分别在第二和第一指标.换句话说,我想考虑A成为一个大小矩阵的数组,[M,N]并且B是等长的[N,Q]矩阵数组; 我想逐个元素(逐个矩阵)乘以这些数组来获得大小[M,Q,P].

我可以通过for循环来做到这一点:

assert(size(A,2) == size(B,1));
assert(size(A,3) == size(B,3));

M = size(A,1);
P = size(A,3);
Q = size(B,2);

C = zeros(M, Q, P);
for ii = 1:size(A,3)
    C(:,:,ii) = A(:,:,ii) * B(:,:,ii);
end
Run Code Online (Sandbox Code Playgroud)

有没有办法避免for循环?(也许可以使用任意数量维的数组?)

Amr*_*mro 4

这是一个解决方案(与此处所做的类似),它在单个矩阵乘法运算中计算结果,尽管它涉及对矩阵的大量操作以将它们变成所需的形状。然后我将它与简单的 for 循环计算进行比较(我承认它更具可读性)

%# 3D matrices
A = rand(4,2,3);
B = rand(2,5,3);
[m n p] = size(A);
[n q p] = size(B);

%# single matrix-multiplication operation (computes more products than needed)
AA = reshape(permute(A,[2 1 3]), [n m*p])';      %'# cat(1,A(:,:,1),...,A(:,:,p))
BB = reshape(B, [n q*p]);                         %# cat(2,B(:,:,1),...,B(:,:,p))
CC = AA * BB;
[mp qp] = size(CC);

%# only keep "blocks" on the diagonal
yy = repmat(1:qp, [m 1]);
xx = bsxfun(@plus, repmat(1:m,[1 q])', 0:m:mp-1); %'
idx = sub2ind(size(CC), xx(:), yy(:));
CC = reshape(CC(idx), [m q p]);

%# compare against FOR-LOOP solution
C = zeros(m,q,p);
for i=1:p
    C(:,:,i) = A(:,:,i) * B(:,:,i);
end
isequal(C,CC)
Run Code Online (Sandbox Code Playgroud)

请注意,上面执行的乘法比所需的要多,但有时“任何添加都会减少(执行时间)”。遗憾的是事实并非如此,因为 FOR 循环在这里要快得多:)

我的观点是要表明矢量化并不容易,并且基于循环的解决方案并不总是不好......