AttributeError:“Upsample”对象没有属性“recompute_scale_factor”

Han*_*Han 7 python-3.x torch pytorch

我在线收到错误x_stats = dec(z).float()

import torch.nn.functional as F

z_logits = enc(x)
z = torch.argmax(z_logits, axis=1)
z = F.one_hot(z, num_classes=enc.vocab_size).permute(0, 3, 1, 2).float()

x_stats = dec(z).float()
x_rec = unmap_pixels(torch.sigmoid(x_stats[:, :3]))
x_rec = T.ToPILImage(mode='RGB')(x_rec[0])

display_markdown('Reconstructed image:')
display(x_rec)
Run Code Online (Sandbox Code Playgroud)

我尝试降级并重新安装该torch软件包,但这并不能解决问题。我的包版本是torch==1.11.0

完整回溯:

AttributeError                            Traceback (most recent call last)
/Users/hanpham/github/DALL-E/notebooks/usage.ipynb Cell 4' in <cell line: 7>()
      4 z = torch.argmax(z_logits, axis=1)
      5 z = F.one_hot(z, num_classes=enc.vocab_size).permute(0, 3, 1, 2).float()
----> 7 x_stats = dec(z).float()
      8 x_rec = unmap_pixels(torch.sigmoid(x_stats[:, :3]))
      9 x_rec = T.ToPILImage(mode='RGB')(x_rec[0])

File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
   1106 # If we don't have any hooks, we want to skip the rest of the logic in
   1107 # this function, and just call forward.
   1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1109         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110     return forward_call(*input, **kwargs)
   1111 # Do not call functions when jit is used
   1112 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/homebrew/lib/python3.9/site-packages/dall_e/decoder.py:94, in Decoder.forward(self, x)
     91 if x.dtype != torch.float32:
     92     raise ValueError('input must have dtype torch.float32')
---> 94 return self.blocks(x)

File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
   1106 # If we don't have any hooks, we want to skip the rest of the logic in
   1107 # this function, and just call forward.
   1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1109         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110     return forward_call(*input, **kwargs)
   1111 # Do not call functions when jit is used
   1112 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/container.py:141, in Sequential.forward(self, input)
    139 def forward(self, input):
    140     for module in self:
--> 141         input = module(input)
    142     return input

File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
   1106 # If we don't have any hooks, we want to skip the rest of the logic in
   1107 # this function, and just call forward.
   1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1109         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110     return forward_call(*input, **kwargs)
   1111 # Do not call functions when jit is used
   1112 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/container.py:141, in Sequential.forward(self, input)
    139 def forward(self, input):
    140     for module in self:
--> 141         input = module(input)
    142     return input

File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
   1106 # If we don't have any hooks, we want to skip the rest of the logic in
   1107 # this function, and just call forward.
   1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1109         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110     return forward_call(*input, **kwargs)
   1111 # Do not call functions when jit is used
   1112 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/upsampling.py:154, in Upsample.forward(self, input)
    152 def forward(self, input: Tensor) -> Tensor:
    153     return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
--> 154                          recompute_scale_factor=self.recompute_scale_factor)

File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1185, in Module.__getattr__(self, name)
   1183     if name in modules:
   1184         return modules[name]
-> 1185 raise AttributeError("'{}' object has no attribute '{}'".format(
   1186     type(self).__name__, name))

AttributeError: 'Upsample' object has no attribute 'recompute_scale_factor'
Run Code Online (Sandbox Code Playgroud)

Dev*_*vil 10

安装Torch版本,这将解决问题


pip install torchvision==0.10.1
pip install torch==1.9.1
Run Code Online (Sandbox Code Playgroud)


ewo*_*okx 1

我认为您的问题可能与https://github.com/ultralytics/yolov5/issues/6948类似。

我对 pytorch 不熟悉;但建议是:

  1. 等待下一个版本(抱歉,这并不是一个很好的建议)

  2. 注释掉https://github.com/ultralytics/yolov5/issues/6948#issuecomment-1075528897中指出的代码,即:

/opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/upsampling.py排队中153-154

改变:

  return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
recompute_scale_factor=self.recompute_scale_factor)

Run Code Online (Sandbox Code Playgroud)

到:

  return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)
# recompute_scale_factor=self.recompute_scale_factor)
Run Code Online (Sandbox Code Playgroud)

或者

  return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
# recompute_scale_factor=self.recompute_scale_factor
)

Run Code Online (Sandbox Code Playgroud)

在我看来,作为一种“解决方法”,您可以执行注释掉选项,直到新版本出现为止,您可以撤消comment out和 升级。

虽然我同意这是一个“答案”,但它并不是完美的答案。我很抱歉。