Inn*_*mer 5 python pandas pyspark
from statistics import mean
import pandas as pd
df = pd.DataFrame(columns=['A', 'B', 'C'])
df["A"] = [1, 2, 3, 4, 4, 5, 6]
df["B"] = ["Feb", "Feb", "Feb", "May", "May", "May", "May"]
df["C"] = [10, 20, 30, 40, 30, 50, 60]
df1 = df.groupby(["A","B"]).agg(mean_err=("C", mean)).reset_index()
df1["threshold"] = df1["A"] * df1["mean_err"]
Run Code Online (Sandbox Code Playgroud)
我该如何像 Pyspark .withColumn() 中那样执行最后一行代码?
这段代码不会工作。我想通过使用动态操作的输出来创建新列,就像我们在 Pyspark withColumn 方法中所做的那样。
有人知道如何做到这一点吗?
DataFrame.eval(df.groupby(['A', 'B'], as_index=False)
.agg(mean_err=('C', 'mean'))
.eval('threshold = A * mean_err'))
Run Code Online (Sandbox Code Playgroud)
DataFrame.assign(df.groupby(['A', 'B'], as_index=False)
.agg(mean_err=('C', 'mean'))
.assign(threshold=lambda x: x['A'] * x['mean_err']))
Run Code Online (Sandbox Code Playgroud)
A B mean_err threshold
0 1 Feb 10.0 10.0
1 2 Feb 20.0 40.0
2 3 Feb 30.0 90.0
3 4 May 35.0 140.0
4 5 May 50.0 250.0
5 6 May 60.0 360.0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1447 次 |
| 最近记录: |