avo*_*ado 5 python backpropagation pytorch
即使是非常简单的示例,backward()
如果 也无法工作sparse_grad=True
,请参阅下面的错误。
这个错误是预期的,还是我使用的gather
方式错误?
In [1]: import torch as th
In [2]: x = th.rand((3,3), requires_grad=True)
# sparse_grad = False, the backward could work as expetecd
In [3]: th.gather(x @ x, 1, th.LongTensor([[0], [1]]), sparse_grad=False).sum().backward()
# sparse_grad = True, backward CANNOT work
In [4]: th.gather(x @ x, 1, th.LongTensor([[0], [1]]), sparse_grad=True).sum().backward()
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
----> 1 th.gather(x @ x, 1, th.LongTensor([[0], [1]]), sparse_grad=True).sum().backward()
~/miniconda3/lib/python3.9/site-packages/torch/_tensor.py in backward(self, gradient, retain_graph, create_graph, inputs)
305 create_graph=create_graph,
306 inputs=inputs)
--> 307 torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
308
309 def register_hook(self, hook):
~/miniconda3/lib/python3.9/site-packages/torch/autograd/__init__.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
152 retain_graph = create_graph
153
--> 154 Variable._execution_engine.run_backward(
155 tensors, grad_tensors_, retain_graph, create_graph, inputs,
156 allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag
RuntimeError: sparse tensors do not have strides
Run Code Online (Sandbox Code Playgroud)
我认为torch.gather
不支持稀疏运算符:
torch.gather(x, 1, torch.LongTensor([[0], [1]]).to_sparse())
Run Code Online (Sandbox Code Playgroud)
结果:
Run Code Online (Sandbox Code Playgroud)NotImplementedError: Could not run 'aten::gather.out' with arguments from the 'SparseCPU' backend.
我认为你应该在pytorch 的 github上提出问题或功能请求。
归档时间: |
|
查看次数: |
726 次 |
最近记录: |