Ben*_*iaz 5 python machine-learning scikit-learn cross-validation data-science
我正在尝试进行网格搜索来优化我的模型,但执行时间太长。我的总数据集只有大约 15,000 个观察值,大约有 30-40 个变量。我成功地通过 gridsearch 运行了一个随机森林,这花了大约一个半小时,但现在我已经切换到 SVC,它已经运行了 9 个多小时,但仍然没有完成。以下是我的交叉验证代码示例:
from sklearn.model_selection import GridSearchCV
from sklearn import svm
from sklearn.svm import SVC
SVM_Classifier= SVC(random_state=7)
param_grid = {'C': [0.1, 1, 10, 100],
'gamma': [1,0.1,0.01,0.001],
'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],
'degree' : [0, 1, 2, 3, 4, 5, 6]}
grid_obj = GridSearchCV(SVM_Classifier,
return_train_score=True,
param_grid=param_grid,
scoring='roc_auc',
cv=3,
n_jobs = -1)
grid_fit = grid_obj.fit(X_train, y_train)
SVMC_opt = grid_fit.best_estimator_
print('='*20)
print("best params: " + str(grid_obj.best_estimator_))
print("best params: " + str(grid_obj.best_params_))
print('best score:', grid_obj.best_score_)
print('='*20)
Run Code Online (Sandbox Code Playgroud)
我已经将交叉验证从 10 个减少到 3 个,并且我使用 n_jobs=-1,因此我正在调动所有核心。我还缺少什么可以在这里做的来加快这个过程吗?