Gra*_*man 4 python reinforcement-learning python-3.x keras tensorflow
我想让人工智能玩我的自定义环境,不幸的是,当我运行我的代码时,会出现以下错误:
File "C:\Program Files\JetBrains\PyCharm Community Edition 2021.2\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_umd.py", line 198, in runfile
pydev_imports.execfile(filename, global_vars, local_vars) # execute the script
File "C:\Program Files\JetBrains\PyCharm Community Edition 2021.2\plugins\python-ce\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "D:/PycharmProjects/Custom Enviroment AI/Enviroment.py", line 88, in <module>
DQN = buildAgent(model, actions)
File "D:/PycharmProjects/Custom Enviroment AI/Enviroment.py", line 82, in buildAgent
dqn = DQNAgent(model, memory=memory, policy=policy, nb_actions=actions, nb_steps_warmup=10,
File "D:\PycharmProjects\Custom Enviroment AI\venv\lib\site-packages\rl\agents\dqn.py", line 108, in __init__
if hasattr(model.output, '__len__') and len(model.output) > 1:
File "D:\PycharmProjects\Custom Enviroment AI\venv\lib\site-packages\keras\engine\keras_tensor.py", line 221, in __len__
raise TypeError('Keras symbolic inputs/outputs do not '
TypeError: Keras symbolic inputs/outputs do not implement `__len__`. You may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model. This error will also get raised if you try asserting a symbolic input/output directly.
Run Code Online (Sandbox Code Playgroud)
该错误表明您不应该使用 len() 而应该使用 .shape ,不幸的是这似乎是张量流中的错误我的完整代码是:
from rl.memory import SequentialMemory
from rl.policy import BoltzmannQPolicy
from rl.agents.dqn import DQNAgent
from keras.layers import Dense
import tensorflow as tf
import numpy as np
import random
import pygame
import gym
class Env(gym.Env):
def __init__(self):
self.action_space = gym.spaces.Discrete(4)
self.observation_space = gym.spaces.MultiDiscrete([39, 27])
self.screen = pygame.display.set_mode((800, 600))
self.PlayerX = 0
self.PlayerY = 0
self.FoodX = 0
self.FoodY = 0
self.state = [self.FoodX - self.PlayerX + 19, self.FoodY - self.PlayerY + 14]
self.timeLimit = 1000
def render(self, mode="human"):
self.screen.fill((0, 0, 0))
pygame.draw.rect(self.screen, (255, 255, 255), pygame.Rect(self.PlayerX * 40, self.PlayerY * 40, 40, 40))
pygame.draw.rect(self.screen, (255, 0, 0), pygame.Rect(self.FoodX * 40, self.FoodY * 40, 40, 40))
pygame.display.update()
def reset(self):
self.FoodX = random.randint(1, 19)
self.FoodY = random.randint(1, 14)
self.PlayerX = 0
self.PlayerY = 0
self.timeLimit = 1000
return self.state
def step(self, action):
self.timeLimit -= 1
reward = -1
if action == 0 and self.PlayerY > 0:
self.PlayerY -= 1
if action == 1 and self.PlayerX > 0:
self.PlayerX -= 1
if action == 2 and self.PlayerY < 14:
self.PlayerY += 1
if action == 3 and self.PlayerX < 19:
self.PlayerX += 1
if self.PlayerX == self.FoodX and self.PlayerY == self.FoodY:
reward += 30
self.FoodX = random.randint(1, 19)
self.FoodY = random.randint(1, 14)
if self.timeLimit <= 0:
done = True
else:
done = False
self.state = [self.FoodX - self.PlayerX, self.FoodY - self.PlayerY]
return self.state, reward, done
env = Env()
states = env.observation_space.shape
actions = env.action_space.n
def build_model(states, actions):
model = tf.keras.Sequential()
model.add(Dense(2, activation='relu', input_shape=states))
model.add(Dense(4, activation='relu'))
model.add(Dense(actions, activation='linear'))
return model
def buildAgent(model, actions):
policy = BoltzmannQPolicy()
memory = SequentialMemory(limit=50000, window_length=1)
dqn = DQNAgent(model, memory=memory, policy=policy, nb_actions=actions, nb_steps_warmup=10,
target_model_update=1e-2)
return dqn
model = build_model(states, actions)
DQN = buildAgent(model, actions)
DQN.compile(tf.keras.optimizers.Adam(learning_rate=1e-3), metrics=['mae'])
DQN.fit(env, nb_steps=50000, visualize=False, verbose=1)
scores = DQN.test(env, nb_episodes=100, visualize=True)
print(np.mean(scores.history['episode_reward']))
pygame.quit()
model.save('model.h5')
Run Code Online (Sandbox Code Playgroud)
我使用张量流:2.8.0。这似乎是 Tensorflow 代码中的错误,但我不知道该怎么做
正如这里提到的,您需要安装更新版本的keras-rl:
!pip install keras-rl2
Run Code Online (Sandbox Code Playgroud)
您还需要在输入形状中添加一个额外的维度,并Flatten在最后添加一个图层,因为Keras在使用DQN代理时需要这样做:
def build_model(states, actions):
model = tf.keras.Sequential()
model.add(Dense(2, activation='relu', input_shape=(1, states[0])))
model.add(Dense(4, activation='relu'))
model.add(Dense(actions, activation='linear'))
model.add(Flatten())
return model
Run Code Online (Sandbox Code Playgroud)
最后,您的step自定义环境中的方法还必须返回一个info字典(我刚刚创建了一个空字典):
def step(self, action):
self.timeLimit -= 1
reward = -1
if action == 0 and self.PlayerY > 0:
self.PlayerY -= 1
if action == 1 and self.PlayerX > 0:
self.PlayerX -= 1
if action == 2 and self.PlayerY < 14:
self.PlayerY += 1
if action == 3 and self.PlayerX < 19:
self.PlayerX += 1
if self.PlayerX == self.FoodX and self.PlayerY == self.FoodY:
reward += 30
self.FoodX = random.randint(1, 19)
self.FoodY = random.randint(1, 14)
if self.timeLimit <= 0:
done = True
else:
done = False
self.state = [self.FoodX - self.PlayerX, self.FoodY - self.PlayerY]
return self.state, reward, done, {}
Run Code Online (Sandbox Code Playgroud)
如果您进行这些更改,它应该可以正常工作。这是完整的工作代码:
from rl.memory import SequentialMemory
from rl.policy import BoltzmannQPolicy
from rl.agents.dqn import DQNAgent
from keras.layers import Dense, Flatten
import tensorflow as tf
import numpy as np
import random
import pygame
import gym
class Env(gym.Env):
def __init__(self):
self.action_space = gym.spaces.Discrete(4)
self.observation_space = gym.spaces.MultiDiscrete([39, 27])
self.screen = pygame.display.set_mode((800, 600))
self.PlayerX = 0
self.PlayerY = 0
self.FoodX = 0
self.FoodY = 0
self.state = [self.FoodX - self.PlayerX + 19, self.FoodY - self.PlayerY + 14]
self.timeLimit = 1000
def render(self, mode="human"):
self.screen.fill((0, 0, 0))
pygame.draw.rect(self.screen, (255, 255, 255), pygame.Rect(self.PlayerX * 40, self.PlayerY * 40, 40, 40))
pygame.draw.rect(self.screen, (255, 0, 0), pygame.Rect(self.FoodX * 40, self.FoodY * 40, 40, 40))
pygame.display.update()
def reset(self):
self.FoodX = random.randint(1, 19)
self.FoodY = random.randint(1, 14)
self.PlayerX = 0
self.PlayerY = 0
self.timeLimit = 1000
return self.state
def step(self, action):
self.timeLimit -= 1
reward = -1
if action == 0 and self.PlayerY > 0:
self.PlayerY -= 1
if action == 1 and self.PlayerX > 0:
self.PlayerX -= 1
if action == 2 and self.PlayerY < 14:
self.PlayerY += 1
if action == 3 and self.PlayerX < 19:
self.PlayerX += 1
if self.PlayerX == self.FoodX and self.PlayerY == self.FoodY:
reward += 30
self.FoodX = random.randint(1, 19)
self.FoodY = random.randint(1, 14)
if self.timeLimit <= 0:
done = True
else:
done = False
self.state = [self.FoodX - self.PlayerX, self.FoodY - self.PlayerY]
return self.state, reward, done, {}
env = Env()
states = env.observation_space.shape
actions = env.action_space.n
def build_model(states, actions):
model = tf.keras.Sequential()
model.add(Dense(2, activation='relu', input_shape=(1, states[0])))
model.add(Dense(4, activation='relu'))
model.add(Dense(actions, activation='linear'))
model.add(Flatten())
return model
def buildAgent(model, actions):
policy = BoltzmannQPolicy()
memory = SequentialMemory(limit=50000, window_length=1)
dqn = DQNAgent(model, memory=memory, policy=policy, nb_actions=actions, nb_steps_warmup=10,
target_model_update=1e-2)
return dqn
model = build_model(states, actions)
DQN = buildAgent(model, actions)
DQN.compile(tf.keras.optimizers.Adam(learning_rate=1e-3), metrics=['mae'])
DQN.fit(env, nb_steps=50000, visualize=False, verbose=1)
scores = DQN.test(env, nb_episodes=100, visualize=True)
print(np.mean(scores.history['episode_reward']))
pygame.quit()
model.save('model.h5')
Run Code Online (Sandbox Code Playgroud)
有关更多信息,请参阅文档。
| 归档时间: |
|
| 查看次数: |
10739 次 |
| 最近记录: |