Gra*_*man 5 python reinforcement-learning keras tensorflow
我想编译我的 DQN 代理,但出现错误:
AttributeError: 'Adam' object has no attribute '_name',
DQN = buildAgent(model, actions)
DQN.compile(Adam(lr=1e-3), metrics=['mae'])
Run Code Online (Sandbox Code Playgroud)
我尝试添加假的_name,但它不起作用,我正在遵循教程并且它可以在导师的机器上运行,这可能是一些新的更新更改,但如何解决这个问题
这是我的完整代码:
from keras.layers import Dense, Flatten
import gym
from keras.optimizer_v1 import Adam
from rl.agents.dqn import DQNAgent
from rl.policy import BoltzmannQPolicy
from rl.memory import SequentialMemory
env = gym.make('CartPole-v0')
states = env.observation_space.shape[0]
actions = env.action_space.n
episodes = 10
def buildModel(statez, actiones):
model = Sequential()
model.add(Flatten(input_shape=(1, statez)))
model.add(Dense(24, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(actiones, activation='linear'))
return model
model = buildModel(states, actions)
def buildAgent(modell, actionz):
policy = BoltzmannQPolicy()
memory = SequentialMemory(limit=50000, window_length=1)
dqn = DQNAgent(model=modell, memory=memory, policy=policy, nb_actions=actionz, nb_steps_warmup=10, target_model_update=1e-2)
return dqn
DQN = buildAgent(model, actions)
DQN.compile(Adam(lr=1e-3), metrics=['mae'])
DQN.fit(env, nb_steps=50000, visualize=False, verbose=1)
Run Code Online (Sandbox Code Playgroud)
您的错误来自于导入Adam,您可以使用以下方法from keras.optimizer_v1 import Adam解决您的问题:tf.keras.optimizers.AdamTensorFlow >= v2
(该lr参数已被弃用,最好使用它learning_rate。)
# !pip install keras-rl2
import tensorflow as tf
from keras.layers import Dense, Flatten
import gym
from rl.agents.dqn import DQNAgent
from rl.policy import BoltzmannQPolicy
from rl.memory import SequentialMemory
env = gym.make('CartPole-v0')
states = env.observation_space.shape[0]
actions = env.action_space.n
episodes = 10
def buildModel(statez, actiones):
model = tf.keras.Sequential()
model.add(Flatten(input_shape=(1, statez)))
model.add(Dense(24, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(actiones, activation='linear'))
return model
def buildAgent(modell, actionz):
policy = BoltzmannQPolicy()
memory = SequentialMemory(limit=50000, window_length=1)
dqn = DQNAgent(model=modell, memory=memory, policy=policy,
nb_actions=actionz, nb_steps_warmup=10,
target_model_update=1e-2)
return dqn
model = buildModel(states, actions)
DQN = buildAgent(model, actions)
DQN.compile(tf.keras.optimizers.Adam(learning_rate=1e-3), metrics=['mae'])
DQN.fit(env, nb_steps=50000, visualize=False, verbose=1)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9906 次 |
| 最近记录: |