use*_*622 3 python nlp gpu huggingface-transformers
我正在为分类问题训练 Huggingface Longformer 并得到以下输出。
我很困惑Total optimization steps
。由于我有 7000 个训练数据点和 5 个时期,并且Total train batch size (w. parallel, distributed & accumulation) = 64
,我不应该获取
7000*5/64
步骤吗?那到了546.875
?为什么显示 Total optimization steps = 545
为什么在下面的输出中,有 16 个Input ids are automatically padded from 1500 to 1536 to be a multiple of config.attention_window: 512
步骤 [ 23/545 14:24 < 5:58:16, 0.02 it/s, Epoch 0.20/5]
?这些步骤是什么?
=================================================== ========
***** Running training *****
Num examples = 7000
Num Epochs = 5
Instantaneous batch size per device = 4
Total train batch size (w. parallel, distributed & accumulation) = 64
Gradient Accumulation steps = 16
Total optimization steps = 545
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
Initializing global attention on CLS token...
Input ids are automatically padded from 1500 to 1536 to be a multiple of `config.attention_window`: 512
[ 23/545 14:24 < 5:58:16, 0.02 it/s, Epoch 0.20/5]
Epoch Training Loss Validation Loss
Run Code Online (Sandbox Code Playgroud)
#更新
添加Trainer
和TrainingArguments
#class weights
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.get("labels")
# forward pass
outputs = model(**inputs)
logits = outputs.get("logits")
# compute custom loss (suppose one has 3 labels with different weights)
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 0.5243])).to(device)
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1)).to(device)
return (loss, outputs) if return_outputs else loss
trainer = CustomTrainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_df_tuning_dataset_tokenized,
eval_dataset=val_dataset_tokenized
)
# define the training arguments
training_args = TrainingArguments(
num_train_epochs = 5,# changed this from 5
per_device_train_batch_size = 4,#4,#8,
gradient_accumulation_steps = 16,
per_device_eval_batch_size= 16,#16
evaluation_strategy = "epoch",
save_strategy = "epoch",
learning_rate=2e-5,
load_best_model_at_end=True,
greater_is_better=False,
disable_tqdm = False,
weight_decay=0.01,
optim="adamw_torch",#removing on 18 march from huggingface example notebook
run_name = 'longformer-classification-16March2022'
)
Run Code Online (Sandbox Code Playgroud)
查看包的实现transformers
,我们看到在方法中打印消息时Trainer
使用了一个调用的变量:max_steps
Total optimization steps
train
logger.info("***** Running training *****")
logger.info(f" Num examples = {num_examples}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_steps}")
Run Code Online (Sandbox Code Playgroud)
该方法Trainer
前面有以下代码train
:
class Trainer:
[...]
def train(self) -> None:
[Some irrelevant code ommited here...]
total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
if train_dataset_is_sized:
num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
if args.max_steps > 0:
max_steps = args.max_steps
num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
args.max_steps % num_update_steps_per_epoch > 0
)
# May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's
# the best we can do.
num_train_samples = args.max_steps * total_train_batch_size
else:
max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
num_train_epochs = math.ceil(args.num_train_epochs)
num_train_samples = len(self.train_dataset) * args.num_train_epochs
Run Code Online (Sandbox Code Playgroud)
total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
在您的示例中将等于total_train_batch_size = 4 * 16 * 1 = 64
,如预期的那样。
然后我们num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps
就得到了num_update_steps_per_epoch = len(train_dataloader) // 16
。
现在 a 的长度DataLoader
等于该 中的批次数DataLoader
。由于您有 7000 个样品,而我们有per_device_train_batch_size
4 个样品,这将为我们提供7000 / 4 = 1750
批次。回到num_update_steps_per_epoch
我们现在有num_update_steps_per_epoch = 1750 // 16 = 109
(Python 整数除法发言)
您没有指定最大步数,因此我们可以max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
得到max_steps = math.ceil(5 * 109) = 545
。
在 Transformer 架构中,从技术上讲,您不必将所有样本填充为相同的长度。真正重要的是批次内的样本长度相同,不同批次的长度可能不同。
这意味着对于每个经过前向传递的批次,都会显示此消息。至于为什么该消息出现了 16 次,尽管 23 个批次实际上已经经过了前向传递,我可以想到两个可能的原因:
归档时间: |
|
查看次数: |
1083 次 |
最近记录: |