优化的TSP算法

IVl*_*lad 17 algorithm math optimization graph

我感兴趣的方法来改善或者想出了能够解决算法旅行商问题有关n = 100 to 200的城市.

我给出的维基百科链接列出了各种优化,但它在相当高的水平上这样做,我不知道如何在代码中实际实现它们.

工业有实力的求解器在那里,如协和,但这些办法,因为我想要的东西太复杂,而经典的解决方案,充斥搜索TSP所有在场的随机算法或经典的回溯或者动态规划算法,只有约工作20个城市.

那么,有没有人知道如何实现一个简单的(简单来说,我的意思是一个实现不需要超过100-200行代码)TSP求解器在至少100个城市的合理时间(几秒)内工作?我只对确切的解决方案感兴趣.

您可以假设输入将是随机生成的,因此我不关心专门用于破坏某种算法的输入.

com*_*les 51

200行和没有库是一个严格的约束.高级求解器使用Held-Karp松弛进行分支和绑定,我不确定即使是最基本的版本也能适应200条法线.不过,这是一个大纲.

举行卡普

将TSP编写为整数程序的一种方法如下(Dantzig,Fulkerson,Johnson).对于所有边e,常数w e表示边e的长度,如果边e在旅程中,则变量x e为1,否则为0.对于顶点的所有子集S,∂(S)表示连接S中的顶点与不在S中的顶点的边.

最小化和边缘Ë瓦特Ë X ë

1.所有顶点V,总和边缘E在∂({V}) X ë = 2
2.顶点的所有非空真子集S,总和边缘∂E(S) X ë ≥2
3.对于所有的边缘E在E,X ë在{0,1}

条件1确保边集是旅程的集合.条件2确保只有一个.(否则,让S为其中一个游览所访问的顶点集.)通过进行此更改来获得Held-Karp松弛.

3.对于所有的边缘E在E,X ë在{0,1}
3.于E所有边缘E,0≤X ë ≤1

Held-Karp是一个线性程序,但它具有指数数量的约束.解决它的一种方法是引入拉格朗日乘数,然后进行次梯度优化.归结为一个循环,它计算最小生成树,然后更新一些向量,但细节是涉及的.除了"Held-Karp"和"subgradient(descent | optimization)"之外,"1-tree"是另一个有用的搜索词.

(一个较慢的选择是写一个LP求解器并引入子层约束,因为它们被前一个optima所违反.这意味着编写一个LP求解器和一个min-cut过程,这也是更多的代码,但它可能更好地延伸到更具异国情调的TSP限制.)

分支机构

通过"部分解决方案",我的意思是将变量部分分配给0或1,其中分配1的边缘肯定在巡回中,并且分配0的边缘肯定是out.使用这些侧面约束来评估Held-Karp可以在最佳巡视中给出一个下限,该巡视尊重已经做出的决策(扩展).

分支和边界维护一组部分解决方案,其中至少有一个扩展到最佳解决方案.一种变体的伪代码,具有最佳优先回溯的深度优先搜索如下.

let h be an empty minheap of partial solutions, ordered by Held–Karp value
let bestsolsofar = null
let cursol be the partial solution with no variables assigned
loop
    while cursol is not a complete solution and cursol's H–K value is at least as good as the value of bestsolsofar
        choose a branching variable v
        let sol0 be cursol union {v -> 0}
        let sol1 be cursol union {v -> 1}
        evaluate sol0 and sol1
        let cursol be the better of the two; put the other in h
    end while
    if cursol is better than bestsolsofar then
        let bestsolsofar = cursol
        delete all heap nodes worse than cursol
    end if
    if h is empty then stop; we've found the optimal solution
    pop the minimum element of h and store it in cursol
end loop
Run Code Online (Sandbox Code Playgroud)

分支和绑定的想法是有一个部分解决方案的搜索树.解决Held-Karp的问题在于LP的值最多是最佳巡回的长度OPT,但也推测至少是3/4 OPT(实际上,通常更接近OPT).

我遗漏的伪代码中的一个细节是如何选择分支变量.目标通常是首先做出"硬"决策,因此修复一个值已接近0或1的变量可能并不明智.一种选择是选择最接近0.5,但有许多,其他许多.

编辑

Java实现.198个非空白,非注释行.我忘了单树不能将变量赋值给1,所以我通过找到一个树的度数> 2的顶点并依次删除每个边来进行分支.该程序接受TSPLIB实例的EUC_2D形式,例如,eil51.tspeil76.tspeil101.tsplin105.tsphttp://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/.

// simple exact TSP solver based on branch-and-bound/Held--Karp
import java.io.*;
import java.util.*;
import java.util.regex.*;

public class TSP {
  // number of cities
  private int n;
  // city locations
  private double[] x;
  private double[] y;
  // cost matrix
  private double[][] cost;
  // matrix of adjusted costs
  private double[][] costWithPi;
  Node bestNode = new Node();

  public static void main(String[] args) throws IOException {
    // read the input in TSPLIB format
    // assume TYPE: TSP, EDGE_WEIGHT_TYPE: EUC_2D
    // no error checking
    TSP tsp = new TSP();
    tsp.readInput(new InputStreamReader(System.in));
    tsp.solve();
  }

  public void readInput(Reader r) throws IOException {
    BufferedReader in = new BufferedReader(r);
    Pattern specification = Pattern.compile("\\s*([A-Z_]+)\\s*(:\\s*([0-9]+))?\\s*");
    Pattern data = Pattern.compile("\\s*([0-9]+)\\s+([-+.0-9Ee]+)\\s+([-+.0-9Ee]+)\\s*");
    String line;
    while ((line = in.readLine()) != null) {
      Matcher m = specification.matcher(line);
      if (!m.matches()) continue;
      String keyword = m.group(1);
      if (keyword.equals("DIMENSION")) {
        n = Integer.parseInt(m.group(3));
        cost = new double[n][n];
      } else if (keyword.equals("NODE_COORD_SECTION")) {
        x = new double[n];
        y = new double[n];
        for (int k = 0; k < n; k++) {
          line = in.readLine();
          m = data.matcher(line);
          m.matches();
          int i = Integer.parseInt(m.group(1)) - 1;
          x[i] = Double.parseDouble(m.group(2));
          y[i] = Double.parseDouble(m.group(3));
        }
        // TSPLIB distances are rounded to the nearest integer to avoid the sum of square roots problem
        for (int i = 0; i < n; i++) {
          for (int j = 0; j < n; j++) {
            double dx = x[i] - x[j];
            double dy = y[i] - y[j];
            cost[i][j] = Math.rint(Math.sqrt(dx * dx + dy * dy));
          }
        }
      }
    }
  }

  public void solve() {
    bestNode.lowerBound = Double.MAX_VALUE;
    Node currentNode = new Node();
    currentNode.excluded = new boolean[n][n];
    costWithPi = new double[n][n];
    computeHeldKarp(currentNode);
    PriorityQueue<Node> pq = new PriorityQueue<Node>(11, new NodeComparator());
    do {
      do {
        boolean isTour = true;
        int i = -1;
        for (int j = 0; j < n; j++) {
          if (currentNode.degree[j] > 2 && (i < 0 || currentNode.degree[j] < currentNode.degree[i])) i = j;
        }
        if (i < 0) {
          if (currentNode.lowerBound < bestNode.lowerBound) {
            bestNode = currentNode;
            System.err.printf("%.0f", bestNode.lowerBound);
          }
          break;
        }
        System.err.printf(".");
        PriorityQueue<Node> children = new PriorityQueue<Node>(11, new NodeComparator());
        children.add(exclude(currentNode, i, currentNode.parent[i]));
        for (int j = 0; j < n; j++) {
          if (currentNode.parent[j] == i) children.add(exclude(currentNode, i, j));
        }
        currentNode = children.poll();
        pq.addAll(children);
      } while (currentNode.lowerBound < bestNode.lowerBound);
      System.err.printf("%n");
      currentNode = pq.poll();
    } while (currentNode != null && currentNode.lowerBound < bestNode.lowerBound);
    // output suitable for gnuplot
    // set style data vector
    System.out.printf("# %.0f%n", bestNode.lowerBound);
    int j = 0;
    do {
      int i = bestNode.parent[j];
      System.out.printf("%f\t%f\t%f\t%f%n", x[j], y[j], x[i] - x[j], y[i] - y[j]);
      j = i;
    } while (j != 0);
  }

  private Node exclude(Node node, int i, int j) {
    Node child = new Node();
    child.excluded = node.excluded.clone();
    child.excluded[i] = node.excluded[i].clone();
    child.excluded[j] = node.excluded[j].clone();
    child.excluded[i][j] = true;
    child.excluded[j][i] = true;
    computeHeldKarp(child);
    return child;
  }

  private void computeHeldKarp(Node node) {
    node.pi = new double[n];
    node.lowerBound = Double.MIN_VALUE;
    node.degree = new int[n];
    node.parent = new int[n];
    double lambda = 0.1;
    while (lambda > 1e-06) {
      double previousLowerBound = node.lowerBound;
      computeOneTree(node);
      if (!(node.lowerBound < bestNode.lowerBound)) return;
      if (!(node.lowerBound < previousLowerBound)) lambda *= 0.9;
      int denom = 0;
      for (int i = 1; i < n; i++) {
        int d = node.degree[i] - 2;
        denom += d * d;
      }
      if (denom == 0) return;
      double t = lambda * node.lowerBound / denom;
      for (int i = 1; i < n; i++) node.pi[i] += t * (node.degree[i] - 2);
    }
  }

  private void computeOneTree(Node node) {
    // compute adjusted costs
    node.lowerBound = 0.0;
    Arrays.fill(node.degree, 0);
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) costWithPi[i][j] = node.excluded[i][j] ? Double.MAX_VALUE : cost[i][j] + node.pi[i] + node.pi[j];
    }
    int firstNeighbor;
    int secondNeighbor;
    // find the two cheapest edges from 0
    if (costWithPi[0][2] < costWithPi[0][1]) {
      firstNeighbor = 2;
      secondNeighbor = 1;
    } else {
      firstNeighbor = 1;
      secondNeighbor = 2;
    }
    for (int j = 3; j < n; j++) {
      if (costWithPi[0][j] < costWithPi[0][secondNeighbor]) {
        if (costWithPi[0][j] < costWithPi[0][firstNeighbor]) {
          secondNeighbor = firstNeighbor;
          firstNeighbor = j;
        } else {
          secondNeighbor = j;
        }
      }
    }
    addEdge(node, 0, firstNeighbor);
    Arrays.fill(node.parent, firstNeighbor);
    node.parent[firstNeighbor] = 0;
    // compute the minimum spanning tree on nodes 1..n-1
    double[] minCost = costWithPi[firstNeighbor].clone();
    for (int k = 2; k < n; k++) {
      int i;
      for (i = 1; i < n; i++) {
        if (node.degree[i] == 0) break;
      }
      for (int j = i + 1; j < n; j++) {
        if (node.degree[j] == 0 && minCost[j] < minCost[i]) i = j;
      }
      addEdge(node, node.parent[i], i);
      for (int j = 1; j < n; j++) {
        if (node.degree[j] == 0 && costWithPi[i][j] < minCost[j]) {
          minCost[j] = costWithPi[i][j];
          node.parent[j] = i;
        }
      }
    }
    addEdge(node, 0, secondNeighbor);
    node.parent[0] = secondNeighbor;
    node.lowerBound = Math.rint(node.lowerBound);
  }

  private void addEdge(Node node, int i, int j) {
    double q = node.lowerBound;
    node.lowerBound += costWithPi[i][j];
    node.degree[i]++;
    node.degree[j]++;
  }
}

class Node {
  public boolean[][] excluded;
  // Held--Karp solution
  public double[] pi;
  public double lowerBound;
  public int[] degree;
  public int[] parent;
}

class NodeComparator implements Comparator<Node> {
  public int compare(Node a, Node b) {
    return Double.compare(a.lowerBound, b.lowerBound);
  }
}
Run Code Online (Sandbox Code Playgroud)