jcf*_*cco 5 python k-means scikit-learn dask dask-ml
我正在一台具有 16GB RAM 的机器上运行下面粘贴的代码(故意)。
import dask.array as da
import dask.delayed
from sklearn.datasets import make_blobs
import numpy as np
from dask_ml.cluster import KMeans
from dask.distributed import Client
client = Client(n_workers=4, threads_per_worker=1, processes=False,
memory_limit='2GB', scheduler_port=0,
silence_logs=False, dashboard_address=8787)
n_centers = 12
n_features = 4
X_small, y_small = make_blobs(n_samples=1000, centers=n_centers, n_features=n_features, random_state=0)
centers = np.zeros((n_centers, n_features))
for i in range(n_centers):
centers[i] = X_small[y_small == i].mean(0)
print(centers)
n_samples_per_block = 450 * 650 * 900
n_blocks = 4
delayeds = [dask.delayed(make_blobs)(n_samples=n_samples_per_block,
centers=centers,
n_features=n_features,
random_state=i)[0]
for i in range(n_blocks)]
arrays = [da.from_delayed(obj, shape=(n_samples_per_block, n_features), dtype=X_small.dtype)
for obj in delayeds]
X = da.concatenate(arrays)
print(X)
X = X.rechunk((1000, 4))
clf = KMeans(init_max_iter=3, oversampling_factor=10)
clf.fit(X)
client.close()
Run Code Online (Sandbox Code Playgroud)
考虑到我正在创建 4 个工作线程,内存限制为 2 GB(总共 8 GB),我希望看到该算法不超过该机器的内存量。不幸的是,它使用了超过 16 GB 的内存和交换空间。
如果我误解了 Dask 的概念,我真的不知道该代码有什么问题(特别是因为该代码在数据依赖性方面没有任何复杂性)。
这并不是对dask不尊重内存约束问题的直接答案(简短的答案似乎是这不是绑定约束),但是可以沿着以下方向改进代码:
make_blobs由以下内容改编的dask_ml:这减少了由于构建 dask 数组和相关重塑而产生的开销;.close,特别是如果在工作线程上执行的代码中有错误。from dask.distributed import Client
from dask_ml.cluster import KMeans
from dask_ml.datasets import make_blobs
client_params = dict(
n_workers=4,
threads_per_worker=1,
processes=False,
memory_limit="2GB",
scheduler_port=0,
silence_logs=False,
dashboard_address=8787,
)
n_centers = 12
n_features = 4
n_samples = 1000 * 100
chunks = (1000 * 50, 4)
X, _ = make_blobs(
n_samples=n_samples,
centers=n_centers,
n_features=n_features,
random_state=0,
chunks=chunks,
)
clf = KMeans(init_max_iter=3, oversampling_factor=10, n_clusters=n_centers)
with Client(**client_params) as client:
result = clf.fit(X)
print(result.cluster_centers_)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
661 次 |
| 最近记录: |