如何输出概率中的 Shap 值并从二元分类器制作force_plot

zes*_*sla 6 python machine-learning shap

我需要绘制每个特征如何影响LightGBM二元分类器中每个样本的预测概率。所以我需要以概率的形式输出Shap值,而不是正常的Shap值。它似乎没有任何概率输出选项。

下面的示例代码是我用来生成 Shap 值的数据帧并force_plot为第一个数据样本执行的代码。有谁知道我应该如何修改代码来改变输出?我是 Shap 值和 Shap 包的新手。预先非常感谢。

import pandas as pd
import numpy as np
import shap
import lightgbm as lgbm
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y,  test_size=0.2)
model = lgbm.LGBMClassifier()
model.fit(X_train, y_train)


explainer = shap.TreeExplainer(model)
shap_values = explainer(X_train)

# force plot of first row for class 1
class_idx = 1
row_idx = 0
expected_value = explainer.expected_value[class_idx]
shap_value = shap_values[:,:,class_idx].values[row_idx]

shap.force_plot (base_value = expected_value,  shap_values = shap_value, features = X_train.iloc[row_idx, :], matplotlib=True)

# dataframe of shap values for class 1
shap_df = pd.DataFrame(shap_values[:,:, 1 ].values, columns = shap_values.feature_names)
Run Code Online (Sandbox Code Playgroud)

Ser*_*nov 9

长话短说:

link="logit"您可以使用以下方法在概率空间中获得绘图结果force_plot

import pandas as pd
import numpy as np
import shap
import lightgbm as lgbm
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from scipy.special import expit

shap.initjs()

data = load_breast_cancer()

X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

model = lgbm.LGBMClassifier()
model.fit(X_train, y_train)

explainer_raw = shap.TreeExplainer(model)
shap_values = explainer_raw(X_train)

# force plot of first row for class 1
class_idx = 1
row_idx = 0
expected_value = explainer_raw.expected_value[class_idx]
shap_value = shap_values[:, :, class_idx].values[row_idx]

shap.force_plot(
    base_value=expected_value,
    shap_values=shap_value,
    features=X_train.iloc[row_idx, :],
    link="logit",
)
Run Code Online (Sandbox Code Playgroud)

预期输出:

在此输入图像描述

或者,您可以通过以下方式实现相同的目的,明确指定model_output="probability"您有兴趣解释:

explainer = shap.TreeExplainer(
    model,
    data=X_train,
    feature_perturbation="interventional",
    model_output="probability",
)
shap_values = explainer(X_train)

# force plot of first row for class 1
class_idx = 1
row_idx = 0

shap_value = shap_values.values[row_idx]

shap.force_plot(
    base_value=expected_value, 
    shap_values=shap_value, 
    features=X_train.iloc[row_idx, :]
)
Run Code Online (Sandbox Code Playgroud)

预期输出:

在此输入图像描述

然而,了解这里发生的事情并找出这些数字的来源可能更有趣:

  1. 我们的兴趣点目标概率:
model_proba= model.predict_proba(X_train.iloc[[row_idx]])
model_proba
# array([[0.00275887, 0.99724113]])
Run Code Online (Sandbox Code Playgroud)
  1. X_train来自作为背景给出的模型的基本情况原始数据(注意,LightGBM输出 class 的原始数据1):
model.predict(X_train, raw_score=True).mean()
# 2.4839751932445577
Run Code Online (Sandbox Code Playgroud)
  1. 基本情况原始来源SHAP(注意,它们是对称的):
bv = explainer_raw(X_train).base_values[0]
bv
# array([-2.48397519,  2.48397519])
Run Code Online (Sandbox Code Playgroud)
  1. SHAP兴趣点的原始值:
sv_0 = explainer_raw(X_train).values[row_idx].sum(0)
sv_0
# array([-3.40619584,  3.40619584])
Run Code Online (Sandbox Code Playgroud)
  1. SHAP值推断的 Proba(通过 sigmoid):
shap_proba = expit(bv + sv_0)
shap_proba
# array([0.00275887, 0.99724113])
Run Code Online (Sandbox Code Playgroud)
  1. 查看:
assert np.allclose(model_proba, shap_proba)
Run Code Online (Sandbox Code Playgroud)

如果有不清楚的地方,请提问。

旁注

如果您正在分析不同特征的原始尺寸效应,Proba 可能会产生误导,因为 sigmoid 是非线性的,并且在达到特定阈值后会饱和。

有些人期望在概率空间中也看到 SHAP 值,但这是不可行的,因为:

  • SHAP 值是通过构造相加的(准确地说,SHAPley 相加解释是所有可能的特征联盟的平均边际贡献)
  • exp(a + b) != exp(a) + exp(b)

您可能会发现有用:

  1. 二元分类中的特征重要性和提取其中一类的 SHA 值仅是答案

  2. 使用SHAP时如何解释GBT分类器的base_value?回答