我正在制作个人WinForms应用程序.在我的场景中说我有一个C#Form1.Form1不断从互联网上获取实时Exchange数据.现在我点击一个按钮Form1然后Form2打开.现在我想从一些值Form1上Form2.
我有一个计时器Form2,可以收集数据,Form1但如何?
我曾尝试使用属性但不能这样做,因为它只更新一次,就像我们初始化Form2时一样.
有解决方案吗
另外,如果不同时创建类的两个表单,如何将它的单个实例传递给它们?
she*_*fly 10
好吧,如果是我,我可能不会尝试直接从Form1获取数据.相反,我会设置一个公共数据源,然后你甚至可以消除Form2上的计时器,并在数据进入时驱动它,如果你愿意的话.(或者你可以离开它,只需从数据源拉出你想要的间隔.)
它会是这样的:
public class ExchangeCommonDataSource
{
public event EventHandler NewDataReceived;
public void FireNewDataReceieved()
{
if (NewDataReceived != null)
NewDataReceived();
}
private string mySomeData1 = "";
public string SomeData1
{
get
{
return SomeData1;
}
set
{
SomeData1 = value;
FireNewDataReceieved();
}
}
// properties for any other data
}
Run Code Online (Sandbox Code Playgroud)
然后,当您打开表单时,您将只创建一个ExchangeCommonDataSource实例,并将其传递给两个表单.在接收数据的表单中,您将要创建一个事件处理函数,并且无论您将数据源传递给何处,您都将挂接该事件.
public void HandleDataReceived(object sender, EventArgs e)
{
// display the data
DoSomethingWith(mySource.SomeData1);
// etc...
}
private ExchangeCommonDataSource mySource;
public void SetDataSource(ExchangeCommonDataSource newSource)
{
mySource = newSource;
mySource.NewDataRecieved += new EventHandler(HandleDataReceived);
}
Run Code Online (Sandbox Code Playgroud)
然后,在您的第一个表单中,您只需设置所需的属性.您实际上可以通过单独的事件处理程序或通过创建自己的派生EventArgs然后使用EventHandler<ExchangeCommonEventArgs>而不是常规事件处理程序来指定要加载的实际数据的通知.
public void GetDataFromExchange()
{
mySource.SomeData1 = GetSomeData1FromExchange();
}
Run Code Online (Sandbox Code Playgroud)
而且,这种方式你不仅仅限于这两种形式的沟通; 如果您决定使用不同的表单将其拆分,您可以让每个人都拥有数据源的副本,并且每个人都可以处理您定义的事件或新事件,并且您不会依赖于您所在的模型.期望彼此之间直接沟通.例如,这也允许创建一个单独的类,它将一些日志数据写入磁盘,或者您可以想象的任何其他内容,而不会对您现有的任何内容进行重大更改.
那么,如果你想更新以最终发送到另一个应用程序或其他机器呢?
嗯,这实际上很好地解释了,因为你没有任何依赖于剩下的表格.所以,假设你想支持三种方法:初始,形式到形式方法; 通过命名管道发送到同一台机器上的另一个应用程序; 和TCP/IP完全到另一台机器.您需要做的就是定义一个充当调度程序的类,将其作为接收程序挂钩,然后您可以挂接该对象以获取来自表单的事件并将数据放在任何您想要的位置.
定义一个抽象类或接口来执行此操作应该相当简单,然后只需为要支持的任何模式派生一个类:
public class ExchangeDataDispatcher :
IDisposable
{
public ExchangeDataDispatcher(ExchangeCommonDataSource parDataSource)
{
myDataSource = parDataSource;
myDataSource.HandleDataReceived +=
new EventHandler(HandleDataReceived);
DispatcherInitialization();
}
private ExchangeCommonDataSource myDataSource;
private void HandleDataReceived(object sender, e EventArgs)
{
// here you could record statistics or whatever about the data
DispatcherHandleDataReceived(EventArgs);
}
protected abstract void DispatcherHandleDataReceived(e EventArgs);
protected abstract void DispatcherShutdown();
// significantly ripped from Microsoft's page on IDisposable
private bool disposed = false;
protected virtual void Dispose(bool disposing)
{
// Check to see if Dispose has already been called.
if(!this.disposed)
{
// If disposing equals true, dispose all managed
// and unmanaged resources.
if(disposing)
{
// call a function which can be overridden in derived
// classes
DispatcherShutdown();
}
// Note disposing has been done.
disposed = true;
}
}
}
Run Code Online (Sandbox Code Playgroud)
请参阅IDisposable上的Microsoft页面,了解一些很好的示例代码以及有关IDisposable的更多信息......
没有办法让表单本身来自这个类,但是没有真正需要,因为你可以像以前一样挂钩.但是,作为一个快速的例子(只是名义上,实际上并没有实现协议,你真的应该考虑实现这些类型的东西的最佳方式,但我想给你一个相当全面的例子来说明它需要什么,它不是那么简单因为真正天真的版本往往是.)
// add these to your using statments
using System.IO.Pipes;
using System.Threading;
// NOTE: take all the async stuff with a grain of salt; this should give you a
// basic idea but there's no way I've gotten it right without actually testing
// and debugging everything. See the link
// http://stackoverflow.com/questions/6710444/named-pipes-server-read-timeout
// for some information on why it has to be done this way: basically timeout
// is not supported for named pipe server streams.
public class ExchangeDataLocalMachineDispatcher :
ExchangeDataDispatcher
{
// see http://www.switchonthecode.com/tutorials/dotnet-35-adds-named-pipes-support
// for some info on named pipes in .NET
public ExchangeDataLocalMachineDispatcher(
ExchangeCommonDataSource parDataSource,
NamedPipeServerStream ServerPipe
) :
base(parDataSource)
{
myPipe = ServerPipe;
// do any extra initialization, etc. here, negotiation for instance
StartPipeThread();
}
private NamedPipeServerStream myPipe;
private ExchangeCommonDataSource myDataSource;
// assuming you have PipeMessage defined and that your handler
// fills them in.
private List<PipeMessage> myOutgoingMessages =
new List<PipeMessage>();
private Thread myPipeThread;
private bool EndPipeListener = false;
private AutoResetEvent myWaitEvent = null;
private AutoResetEvent myDataReadyToGoEvent = null;
// set this to something reasonable for the response timeout
private int WaitTimeout = 10000;
// example: at least every minute there should be data to send
private int WaitForDataToSendTimeout = 60000;
private void StartPipeThread()
{
IAsyncResult LastResult = null;
Action<IAsyncResult> WaitForResult =
(a) =>
{
LastResult = a;
myWaitEvent.Set();
}
myPipeThread = new System.Threading.ThreadStart(
() =>
{
try
{
myWaitEvent = new AutoResetEvent(false);
myPipe.BeginWaitForConnection(
WaitForResult, null
);
bool TimedOut = !myWaitEvent.WaitOne(WaitTimeout);
if (TimedOut || !LastResult.IsCompleted)
throw new Exception("Error: pipe operation error.");
while (!EndPipeListener)
{
byte[] Response = myPipe.BeginRead(
WaitForResult, null
);
myWaitEvent.WaitOne(WaitTimeout);
if (TimedOut || !LastResult.IsCompleted)
throw new Exception("Error: pipe operation error.");
// another assumed function to handle ACKs and such
HandleResponse(Response);
myWaitEvent.Set();
// now wait for data and send
bool TimedOut =
myDataReadyToGoEvent.WaitOne(WaitForDataToSendTimeout);
if (TimedOut || !LastResult.IsCompleted)
throw new Exception("Error: no data to send.");
// an assumed function that will pull the messages out of
// the outgoing message list and send them via the pipe
SendOutgoingMessages();
myDataReadyToGoEvent.Set();
}
myWaitEvent.Set();
}
finally
{
// here you can clean up any resources, for instance you need
// to dispose the wait events, you can leave the pipe for the
// DispatcherShutdown method to fire in case something else
// wants to handle the error and try again... this is all
// fairly naive and should be thought through but I wanted
// to give you some tools you can use.
// can't remember if you're supposed to use .Close
// .Dispose or both off the top of my head; I think it's
// one or the other.
myWaitEvent.Dispose();
myDataReady.Dispose();
myWaitEvent = null;
myDataReady = null;
}
}
);
}
protected PipeMessage[] ConstructEventMessage(e EventArgs)
{
// actually we're not using the event args here but I left it
// as a placeholder for if were using the derived ones.
return
PipeMessage.CreateMessagesFromData(
myDataSource.GetMessageData()
);
}
protected override void DispatcherHandleDataReceived(e EventArgs)
{
// create a packet to send out; assuming that the
// ConstructEventMessage method is defined
myOutgoingMessages.Add(ConstructEventMessage(e));
}
protected override void DispatcherShutdown()
{
// this is called from the base class in the Dispose() method
// you can destroy any remaining resources here
if (myWaitEvent != null)
{
myWaitEvent.Dispose();
}
// etc. and
myPipe.Dispose();
}
// you could theoretically override this method too: if you do, be
// sure to call base.Dispose(disposing) so that the base class can
// clean up if resources are there to be disposed.
// protected virtual void Dispose(bool disposing)
// {
// // do stuff
// base.Dispose(disposing);
// }
}
Run Code Online (Sandbox Code Playgroud)
唷.请注意,我目前对StartPipeThread函数的长度非常不满意,我肯定会重构它.
So, you could also implement this for TCP/IP sockets, or whatever protocol you can imagine, and it's all handled without having to continually modify the classes from the first section.
My apologies for the quality of any of the code there; I am open to suggestion/correction/flaming about it, and I'll do my best to make corrections if you just let me know. :P
After you have this set up, you'll need to pass the same data to whatever forms are using it. If you're not creating both your forms at the same time, then you'll need some way to get each destination a reference to the same data source. (Note: the numbering of the options is in no way intended to imply these are your only choices!)
Here are a few options for doing so:
This method is appropriate if your main form is responsible for creating each of the child forms, for instance, through menu items. You simply create a member variable to hold the data, and wherever you create the data, store a reference to it in that member. If you have multiple instances of the source, you can store them e.g. in a dictionary that allows you to look up the one you need.
private ExchangeCommonDataSource myData { get; set; }
// you can also store in something that lets you identify multiple
// possible data sources; in this case, you could use, say, email address
// as a lookup: myData["mickey@example.com"];
//private Dictionary<string, ExchangeCommonDataSource> myData =
// new Dictionary<string, ExchangeCommonDataSource>();
public frmMyMainForm()
{
InitializeComponent();
// ... other initialization for the main form ...
// create the data here and save it in a private member on your
// form for later; this doesn't have to be in the constructor,
// just make sure you save a reference to the source when you
// do create your first form that uses the source.
myData = new ExchangeCommonDataSource();
}
// then, in the methods that actually create your form
// e.g. if creating from a menu item, the handlers
public void FirstFormCreatorMethod()
{
frmFirstForm = new frmFirstForm(myData);
frmFirstForm.MdiParent = this;
frmFirstForm.Show();
}
public void SecondFormCreatorMethod()
{
frmSecondForm = new frmSecondForm(myData);
frmSecondForm.MdiParent = this;
frmSecondForm.Show();
}
Run Code Online (Sandbox Code Playgroud)
static Properties on your Data SourceThis option can be used if the forms are being created externally from the main form, in which case you will not have access to its methods. The idea behind this method is that you want an easy way to find whatever item you need, independent of the main form itself, and by providing a static method, additional data consumers can find the sources on their own using properties accessible with access only to the class declaration and then some sort of key if there can be multiple sources.
// a dummy source class; this is just the parts that were relevant
// to this particular discussion.
public partial class ExchangeCommonDataSource
{
public string Username { get; set; }
public string OptionalString { get; set; }
public int MailboxNumber { get; set; }
public Guid SourceGuid { get; set; }
public long BigNumber { get; set; }
// these static members provide the functionality necessary to look
// retrieve an existing source just through the class interface
// this holds the lookup of Guid -> Source for later retreival
static Dictionary<Guid, ExchangeCommonDataSource> allSources =
new Dictionary<Guid,ExchangeCommonDataSource>();
// this factory method looks up whether the source with the passed
// Guid already exists; if it does, it returns that, otherwise it
// creates the data source and adds it to the lookup table
public static ExchangeCommonDataSource GetConnection(
Guid parSourceGuid, string parUsername, long parBigNumber
)
{
// there are many issues involved with thread safety, I do not
// guarantee that I got it right here, it's to show the idea. :)
// here I'm just providing some thread safety; by placing a lock
// around the sources to prevent two separate calls to a factory
// method from each creating a source with the same Guid.
lock (allSources)
{
ExchangeCommonDataSource RetVal;
allSources.TryGetValue(parSourceGuid, out RetVal);
if (RetVal == null)
{
// using member initializer, you can do this to limit the
// number of constructors; here we only need the one
RetVal = new ExchangeCommonDataSource(parSourceGuid) {
Username = parUsername, BigNumber = parBigNumber
};
allSources.Add(parSourceGuid, RetVal);
}
return RetVal;
}
}
// this function is actually extraneous since the GetConnection
// method will either create a new or return an existing source.
// if you had need to throw an exception if GetConnection was
// called on for existing source, you could use this to retrieve
public static
ExchangeCommonDataSource LookupDatasource(Guid parSourceGuid)
{
// again locking the sources lookup for thread-safety. the
// rules: 1. don't provide external access to allSources
// 2. everywhere you use allSources in the class,
// place a lock(allsources { } block around it
lock (allSources)
{
ExchangeCommonDataSource RetVal;
allSources.TryGetValue(parSourceGuid, out RetVal);
return RetVal;
}
}
// private constructor; it is private so we can rely on the
// fact that we only provide factory method(s) that insert the
// new items into the main dictionary
private ExchangeCommonDataSource(Guid SourceGuid)
{
// if you didn't want to use a factory, you could always do
// something like the following without it; note you will
// have to throw an error with this implementation because
// there's no way to recover.
//lock (allSources)
//{
// ExchangeCommonDataSource Existing;
// ExchangeCommonDataSource.allSources.
// TryGetValue(parSourceGuid, out Existing);
// if (Existing != null)
// throw new Exception("Requested duplicate source!");
//}
// ... initialize ...
}
}
Run Code Online (Sandbox Code Playgroud)
now to access, the client just needs to have some sort of key to access the data:
public partial class frmClientClass
{
ExchangeCommonDataSource myDataSource = null;
public void InitializeSource(Guid parSourceGuid)
{
myDataSource = ExchangeCommonDataSource.GetConnection(parSourceGuid);
}
}
Run Code Online (Sandbox Code Playgroud)
I find this a generally more compelling solution that Option 1, simply because anything that has access to the class and an ID can get the data source, and because it's fairly easy to implement, and it gives automatic support for doing multiple instances of your data source class.
It has fairly low overhead, and since getting a data source is, in most cases, something that is not going to be done in tight loops (and if it were, you would have local copies, not looking them up from a dictionary every time) any small performance loss should be worth the ease of use. And, best of all, even if you start with one data source, you can easily extend your application to more without having to rewrite any code or go to any further effort.
For instance, a very quick way to use this assuming you only have one data source would be just to use a known value for your Dictionary key, and then you just can hard code that in your second for for now. So, for the example, you could just have the empty GUID as your key, and use that for both your forms. i.e. the Main Form or your first data form would call the create method with Guid.Empty to create the data initially, and then you can just use that to access it when the time comes to open your second form.
Okay, I'm not going to spend much time or write code for this one, but I would be remiss if I didn't mention it. It's very similar to option 2, except, instead of having a static Dictionary to look up multiple data sources, you create a class that has one instance of the class stored in a static property, and you prevent (via exception) any attempts to create more classes. Then, you set all constructors to private, have them throw exceptions if the static variable already contains an object, and you create a getInstance() method which returns the single instance of the class, creating it if it's null.
Now, there are some little thread-safety trickiness issues with this that you will need to understand to write a traditional singleton, so be sure to understand those (there are questions on StackOverflow dealing with the issue). If you don't need any particular knowledge to construct the instance of the class, you can avoid the issues by simply initializing the variable where you declare it e.g. static MyClass theInstance = new MyClass();, and I highly recommend doing that if you do ever use one.
I have used Singletons in the (fairly distant) past, and it's not that they don't occasionally have their uses, especially in embedded systems. But, this is not an embedded system, and almost every time I used a Singleton in a GUI application, I regretted doing it because I ended up eventually re-writing it into something that would allow multiple instances. If you really just need one copy, all you have to do is put a member variable in the class that uses it, say, your main form, and make sure that you don't ever create but one. Doing this, you could even use the pattern by setting a static flag in the class that you can trigger an exception on; set it to true when you first create the object, and then if that's true you can throw your exception.
Anyway, my personal first rule for when to write a singleton is: don't do it unless you are certain you will never need more than one. If it passes that one, then the second rule is: you are wrong, there is a way it could happen, so just write it as a normal class and handle the singleton-ness of it in some other way. :) Seriously though, the real rule is, just don't do it unless you have get some a very solid reason or a significant benefit from doing it.
Oh, and to reiterate: it's very possible to accomplish the pattern of singleton, without writing the canonical singleton class. The pattern is fine, just do it in a way that when that need for a second instance of that class comes along, there is a very low cost to eliminate the pattern.
Option 4 is very similar to Option 2, but implemented in a second class. (In fact, if you ever think you might have multiple sources of data, it would be worthwhile to just start here, although it's a little more time to set up initially.) Instead of having your static items as members of that class, implement another class that has something like them and provides access. This is a way to decouple the class itself from the creating of it. For example, if you were writing a library, and you wanted to provide several different types of data source, you could implement a base class and then derive your other objects from the base class, and then provide creation mechanisms via a class that gives factory methods to create the different kinds.
In a situation like this you very well may not even want whatever is using your data source to have to know anything about the implementation of the data source classes at all, and only go through the base interface, and this provides an easy way to do that. If you had to write it all as base class static members, then you would be forcing a rewrite of the base every time you derived a new class, and it would also be forcing the base to know something about the derived classes, each of which is, in general, something to avoid. In other words, it's not that it's never useful, but don't do it without very good reason, and don't do it without understanding the implications.
// our data source base class; could do interface instead like:
// public interface IInfostoreBase
public abstract class InfostoreBase
{
public abstract int Information { get; set; }
public abstract string NameOfItem { get; set; }
public abstract decimal Cost { get; set; }
// ... etc ...
}
Run Code Online (Sandbox Code Playgroud)
public class InfostoreHomeEdition :
InfostoreBase
{
public override int Information { get { /* ... */ } set { /* ... */ }}
public override string NameOfItem { get { /* ... */ } set { /* ... */ }}
public override decimal Cost { get { /* ... */ } set { /* ... */ }}
public void SetFeatures(string parSomething) { /* ... */ }
}
Run Code Online (Sandbox Code Playgroud)
public class InfostoreEnterpriseEdition :
InfostoreBase
{
public override int Information { get { /* ... */ } set { /* ... */ }}
public override string NameOfItem{ get { /* ... */ } set { /* ... */ }}
public override decimal Cost { get { /* ... */ } set { /* ... */ }}
public void SetBaseDiscount(decimal parSomethingElse) { /* ... */ }
}
Run Code Online (Sandbox Code Playgroud)
public class InfostoreProvider
{
static Dictionary<Guid, InfostoreBase> allSources =
new Dictionary<Guid,InfostoreBase>();
public static InfostoreBase
GetHomeConnection(Guid CustomerKey, string HomeFeatures)
{
lock (allSources)
{
InfostoreBase RetVal;
if (!ValidHomeKey(CustomerKey))
throw new
InvalidKeyException("not valid for Home Edition");
allSources.TryGetValue(CustomerKey, out RetVal);
if (RetVal == null)
{
RetVal = new InfostoreHomeEdition();
allSources.Add(CustomerKey, RetVal);
}
var ActualVersion = (InfostoreHomeEdition) RetVal;
RetVal.SetFeatures(HomeFeatures);
return RetVal;
}
}
public static InfostoreBase
GetEnterpriseConnection(Guid CustomerKey, decimal BaseDiscount)
{
lock (allSources)
{
InfostoreBase RetVal;
if (!ValidEnterpriseKey(CustomerKey))
throw new
InvalidKeyException("not valid for Enterprise Edition");
allSources.TryGetValue(CustomerKey, out RetVal);
if (RetVal == null)
{
RetVal = new InfostoreHomeEdition();
allSources.Add(CustomerKey, RetVal);
}
var ActualVersion = (InfostoreEnterpriseEdition) RetVal;
RetVal.SetBaseDiscount(CostBase);
return RetVal;
}
}
}
Run Code Online (Sandbox Code Playgroud)
private InfostoreBase myConnectionSource;
private void Initialize()
{
// ...
myConnectionSource =
InfostoreProvider.GetConnection(
myKey, isEnterprise, myData
);
//...
}
Run Code Online (Sandbox Code Playgroud)
I think that covers a very good range of possible solutions; none of them is particularly hard to implement, and each has its own benefits and disadvantages. In general I would go for Option 2 or Option 4, but [broken record] it always depends on your exact situation. I think it would be fairly easy to use extend these to handle lots of different situations. And of course if there are any problems, just let me know.