具有记忆的迭代器?

Dog*_*rld 2 python iterator

我正在开发一个使用马尔可夫链的应用程序.

此代码的示例如下:

chain = MarkovChain(order=1)
train_seq = ["","hello","this","is","a","beautiful","world"]

for i, word in enum(train_seq):
 chain.train(previous_state=train_seq[i-1],next_state=word)
Run Code Online (Sandbox Code Playgroud)

我正在寻找的是迭代train_seq,但保留N个最后元素.

for states in unknown(train_seq,order=1):
 # states should be a list of states, with states[-1] the newest word,
 # and states[:-1] should be the previous occurrences of the iteration.
 chain.train(*states)
Run Code Online (Sandbox Code Playgroud)

希望我的问题的描述足够明确

agf*_*agf 6

window会一次给你一些n物品iterable.

from collections import deque

def window(iterable, n=3):
    it = iter(iterable)
    d = deque(maxlen = n)
    for elem in it:
        d.append(elem)
        yield tuple(d)


print [x for x in window([1, 2, 3, 4, 5])]
# [(1,), (1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5)]
Run Code Online (Sandbox Code Playgroud)

如果你想要前几次相同数量的物品,

from collections import deque
from itertools import islice

def window(iterable, n=3):
    it = iter(iterable)
    d = deque((next(it) for Null in range(n-1)), n)
    for elem in it:
        d.append(elem)
        yield tuple(d)


print [x for x in window([1, 2, 3, 4, 5])]
Run Code Online (Sandbox Code Playgroud)

会这样做的.