将嵌套 JSON 对象标准化为 Pandas 数据帧

Wil*_*iam 5 json normalize dataframe pandas

背景:我正在尝试标准化 json 文件,并将其保存到 pandas 数据框中,但是我在导航 json 结构时遇到问题,并且我的代码无法按预期工作。

预期的数据帧输出:给定以下示例json文件(使用随机数据,但格式与真实数据完全相同),这是我试图生成的输出 -

新实体组 实体ID 调整后的价值
(2022 年 1 月 31 日,无 Div,美元)
调整后的 TWR
(本季度无 Div,美元))
调整后的 TWR
(年初至今,无 Div,美元)
年化调整后 TWR
(自成立以来,无 Div,美元)
成立日期 风险目标
作品集_1 $260,786 (44.55%) (44.55%) (44.55%) * 2021 年 4 月 7 日 不适用
FW Irrev 家族Tr 9552252 $260,786 0.00% 0.00% 0.00% * 2022 年 1 月 11 日 不适用
作品集_2 $18,396,664 美元 (5.78%) (5.78%) (5.47%) * 2021 年 9 月 3 日 生长
正向气浮 10946585 $18,396,664 美元 (5.78%) (5.78%) (5.47%) * 2021 年 9 月 3 日 生长
作品集_3 $60,143,818 (4.42%) (4.42%) 7.75% * 2020 年 12 月 17 日 -
FW家族信托 13014080 $475,356 (6.10%) (6.10%) (3.97%) * 2021 年 4 月 9 日 挑衅的
FW流动资金有限合伙人 13396796 $52,899,527 美元 (4.15%) (4.15%) (4.15%) * 2021 年 12 月 30 日 挑衅的
FW 控股第二有限责任公司 8413655 6,768,937 美元 (0.77%) (0.77%) 11.84% * 2021 年 3 月 5 日 不适用
FW 和 FR 接头 9957007 (1 美元) - - - * 2021 年 12 月 21 日 不适用

实际数据帧输出:尽管我尽了最大努力,但我只能将粗体行映射到数据帧中:

新实体组 实体ID 调整后的价值
(2022 年 1 月 31 日,无 Div,美元)
调整后的 TWR
(本季度无 Div,美元))
调整后的 TWR
(年初至今,无 Div,美元)
年化调整后 TWR
(自成立以来,无 Div,美元)
成立日期 风险目标
作品集_1 $260,786 (44.55%) (44.55%) (44.55%) * 2021 年 4 月 7 日 不适用
作品集_2 $18,396,664 美元 (5.78%) (5.78%) (5.47%) * 2021 年 9 月 3 日 生长
作品集_3 $60,143,818 (4.42%) (4.42%) 7.75% * 2020 年 12 月 17 日 -

JSON 文件:这是我尝试标准化并映射到数据帧的文件:

{
    "meta": {
        "columns": [
            {
                "key": "node_id",
                "display_name": "Entity ID",
                "output_type": "Word"
            },
            {
                "key": "value",
                "display_name": "Adjusted Value (1/31/2022, No Div, USD)",
                "output_type": "Number",
                "currency": "USD"
            },
            {
                "key": "time_weighted_return",
                "display_name": "Adjusted TWR (Current Quarter, No Div, USD)",
                "output_type": "Percent",
                "currency": "USD"
            },
            {
                "key": "time_weighted_return_2",
                "display_name": "Adjusted TWR (YTD, No Div, USD)",
                "output_type": "Percent",
                "currency": "USD"
            },
            {
                "key": "time_weighted_return_3",
                "display_name": "Annualized Adjusted TWR (Since Inception, No Div, USD)",
                "output_type": "Percent",
                "currency": "USD"
            },
            {
                "key": "inception_event_date",
                "display_name": "Inception Date",
                "output_type": "Date"
            },
            {
                "key": "_custom_portfolio_target_347209",
                "display_name": "Risk Target",
                "output_type": "Word"
            }
        ],
        "groupings": [
            {
                "key": "_custom_new_entity_group_453577",
                "display_name": "NEW Entity Group"
            },
            {
                "key": "top_level_legal_entity",
                "display_name": "Top Level Legal Entity"
            }
        ]
    },
    "data": {
        "type": "portfolio_views",
        "attributes": {
            "total": {
                "name": "Total",
                "columns": {
                    "time_weighted_return": -0.05001974888806926,
                    "inception_event_date": "2020-12-17",
                    "_custom_portfolio_target_347209": null,
                    "time_weighted_return_3": 0.0678647066340392,
                    "time_weighted_return_2": -0.05001974888806926,
                    "value": 7.880126780581851E7,
                    "node_id": null
                },
                "children": [
                    {
                        "name": "Portfolio_3",
                        "grouping": "_custom_new_entity_group_453577",
                        "columns": {
                            "time_weighted_return": -0.04420061615233983,
                            "inception_event_date": "2020-12-17",
                            "_custom_portfolio_target_347209": null,
                            "time_weighted_return_3": 0.07748325432684622,
                            "time_weighted_return_2": -0.04420061615233983,
                            "value": 6.014381761929752E7,
                            "node_id": null
                        },
                        "children": [
                            {
                                "entity_id": 9957007,
                                "name": "FW and FR Joint",
                                "grouping": "top_level_legal_entity",
                                "columns": {
                                    "time_weighted_return": null,
                                    "inception_event_date": "2021-12-21",
                                    "_custom_portfolio_target_347209": "N/A",
                                    "time_weighted_return_3": null,
                                    "time_weighted_return_2": null,
                                    "value": -1.44,
                                    "node_id": "9957007"
                                },
                                "children": []
                            },
                            {
                                "entity_id": 8413655,
                                "name": "FW Holdings No. 2 LLC",
                                "grouping": "top_level_legal_entity",
                                "columns": {
                                    "time_weighted_return": -0.0077309266066708515,
                                    "inception_event_date": "2021-03-05",
                                    "_custom_portfolio_target_347209": "N/A",
                                    "time_weighted_return_3": 0.11844843557716445,
                                    "time_weighted_return_2": -0.0077309266066708515,
                                    "value": 6768936.74,
                                    "node_id": "8413655"
                                },
                                "children": []
                            },
                            {
                                "entity_id": 13396796,
                                "name": "FW Liquid Fund LP",
                                "grouping": "top_level_legal_entity",
                                "columns": {
                                    "time_weighted_return": -0.04149769229150746,
                                    "inception_event_date": "2021-12-30",
                                    "_custom_portfolio_target_347209": "Aggressive",
                                    "time_weighted_return_3": -0.041497430478377395,
                                    "time_weighted_return_2": -0.04149769229150746,
                                    "value": 5.289952672686747E7,
                                    "node_id": "13396796"
                                },
                                "children": []
                            },
                            {
                                "entity_id": 13014080,
                                "name": "The FW Family Trust",
                                "grouping": "top_level_legal_entity",
                                "columns": {
                                    "time_weighted_return": -0.06102013456998856,
                                    "inception_event_date": "2021-04-09",
                                    "_custom_portfolio_target_347209": "Aggressive",
                                    "time_weighted_return_3": -0.039685671858585514,
                                    "time_weighted_return_2": -0.06102013456998856,
                                    "value": 475355.59242999996,
                                    "node_id": "13014080"
                                },
                                "children": []
                            }
                        ]
                    },
                    {
                        "name": "Portfolio_1",
                        "grouping": "_custom_new_entity_group_453577",
                        "columns": {
                            "time_weighted_return": -0.44554958179309,
                            "inception_event_date": "2021-04-07",
                            "_custom_portfolio_target_347209": "N/A",
                            "time_weighted_return_3": -0.44554958179309,
                            "time_weighted_return_2": -0.44554958179309,
                            "value": 260786.03,
                            "node_id": null
                        },
                        "children": [
                            {
                                "entity_id": 9552252,
                                "name": "The FW Irrev Family Tr",
                                "grouping": "top_level_legal_entity",
                                "columns": {
                                    "time_weighted_return": 0.0,
                                    "inception_event_date": "2022-01-11",
                                    "_custom_portfolio_target_347209": "N/A",
                                    "time_weighted_return_3": 0.0,
                                    "time_weighted_return_2": 0.0,
                                    "value": 260786.03,
                                    "node_id": "9552252"
                                },
                                "children": []
                            }
                        ]
                    },
                    {
                        "name": "Portfolio_2",
                        "grouping": "_custom_new_entity_group_453577",
                        "columns": {
                            "time_weighted_return": -0.05780354507057972,
                            "inception_event_date": "2021-09-03",
                            "_custom_portfolio_target_347209": "Growth",
                            "time_weighted_return_3": -0.05470214863844658,
                            "time_weighted_return_2": -0.05780354507057972,
                            "value": 1.8396664156520825E7,
                            "node_id": null
                        },
                        "children": [
                            {
                                "entity_id": 10946585,
                                "name": "FW DAF",
                                "grouping": "top_level_legal_entity",
                                "columns": {
                                    "time_weighted_return": -0.05780354507057972,
                                    "inception_event_date": "2021-09-03",
                                    "_custom_portfolio_target_347209": "Growth",
                                    "time_weighted_return_3": -0.05470214863844658,
                                    "time_weighted_return_2": -0.05780354507057972,
                                    "value": 1.8396664156520832E7,
                                    "node_id": "10946585"
                                },
                                "children": []
                            }
                        ]
                    }
                ]
            }
        }
    },
    "included": []
}
Run Code Online (Sandbox Code Playgroud)

我的代码:这是我构建的函数,用于尝试规范化 JSON 响应并保存在 pandas 数据框中 -

def unpack_response():
    while True:
        try:    
            api_response = response_writer()
            df = pd.json_normalize(api_response['data']['attributes']['total']['children'])
            df.columns = df.columns.str.replace(r'columns.', '', regex=False)
            column_name_mapper = {column['key']: column['display_name'] for column in api_response['meta']['columns']}
            df.rename(columns=column_name_mapper, inplace=True)
            break
        except KeyError:
            print("-----------------------------------\n","API TIMEOUT ERROR: TRYING AGAIN...", "\n-----------------------------------\n")
    
    df.rename(columns={'name': 'New Entity Group'}, inplace=True)

    column_names = ["New Entity Group", "Entity ID", "Adjusted Value (1/31/2022, No Div, USD)", "Adjusted TWR (Current Quarter, No Div, USD)", "Adjusted TWR (YTD, No Div, USD)", "Annualized Adjusted TWR (Since Inception, No Div, USD)", "Inception Date"]
    df = df.reindex(columns=column_names)
    
    return df
unpack_response()
Run Code Online (Sandbox Code Playgroud)

评论我的代码:

  • Portfolio_1、Portfolio_2、Portfolio_3 - 这些粗体行是 的第一级childrendata并且似乎是唯一保存到df. 我认为这是因为我的代码引用df = pd.json_normalize(api_response['data']['attributes']['total']['children'])所以只查看这些列表。我尝试只是附加['children']['children']到该代码片段的末尾(假设有 3x 级别children,但收到了TypeError: list indices must be integers or slices, not str.

我将不胜感激任何关于如何改进或添加我的功能的建议,这样我就可以利用 key:pair 值,这是级别的 2 倍children

小智 1

就我个人而言,我不会用于pd.json_normalize这种情况。您的 JSON 非常复杂,除非您真正有使用 的经验json_normalize,否则对于普通开发人员来说,以下代码可能需要更少的时间来理解。事实上,您甚至不需要查看 JSON 就可以准确理解这段代码的作用(尽管它肯定会有所帮助;)。

\n

首先,我们可以将 JSON 中的对象(投资组合及其子项)提取到列表中,并使用一系列步骤使它们保持正确的形式和顺序:

\n
def prep_obj(o):\n    """Prepares an object (portfolio/child) from the JSON to be inserted into a dataframe."""\n    return {\n        'New Entity Group': o['name'],\n    } | o['columns']\n\n\n# Get a list of lists, where each sub-list contains the portfolio object at index 0 and then the portfolio object's children:\ngroups = [[prep_obj(o), *[prep_obj(child) for child in o['children']]] for o in api_response['data']['attributes']['total']['children']]\n\n# Sort the portfolio groups by their number:\ngroups.sort(key=lambda g: int(g[0]['New Entity Group'].split('_')[1]))\n\n# Reverse the children of each portfolio group:\ngroups = [[g[0]] + g[1:][::-1] for g in groups]\n\n# Flatten out the groups into one large list of objects:\nobjects = [obj for group in groups for obj in group]\n# The above is exactly equivalent to the following:\n#   objects = []\n#   for group in groups:\n#       for obj in group:\n#           objects.append(obj)\n
Run Code Online (Sandbox Code Playgroud)\n

接下来,创建数据框:

\n
# Create a mapping for column names so that their display names can be used:\nmapping = {col['key']: col['display_name'] for col in api_response['meta']['columns']}\n\n# Create a dataframe from the list of objects:\ndf = pd.DataFrame(objects)\n\n# Correct column names:\ndf = df.rename(mapping, axis=1)\n# Reorder columns:\ncolumn_names = ["New Entity Group", "Entity ID", "Adjusted Value (1/31/2022, No Div, USD)", "Adjusted TWR (Current Quarter, No Div, USD)", "Adjusted TWR (YTD, No Div, USD)", "Annualized Adjusted TWR (Since Inception, No Div, USD)", "Inception Date", "Risk Target"]\ndf = df[column_names]\n
Run Code Online (Sandbox Code Playgroud)\n

并格式化:

\n
def format_twr_col(col):\n    return (\n        col\n        .abs()\n        .mul(100)\n        .round(2)\n        .pipe(lambda s: s.where(s.eq(0) | s.isna(), '(' + s.astype(str) + '%)'))\n        .pipe(lambda s: s.where(s.ne(0) | s.isna(), s.astype(str) + '%'))\n        .fillna('-')\n    )\n\ndef format_value_col(col):\n    positive_mask = col.ge(0)\n\n    col[positive_mask] = (\n        col[positive_mask]\n        .round()\n        .astype(int)\n        .map('${:,}'.format)\n    )\n\n    col[~positive_mask] = (\n        col[~positive_mask]\n        .astype(float)\n        .round()\n        .astype(int)\n        .abs()\n        .map('(${:,})'.format)\n    )\n    \n    return col\n\ndf['Adjusted TWR (Current Quarter, No Div, USD)'] = format_twr_col(df['Adjusted TWR (Current Quarter, No Div, USD)'])\ndf['Annualized Adjusted TWR (Since Inception, No Div, USD)'] = format_twr_col(df['Annualized Adjusted TWR (Since Inception, No Div, USD)'])\ndf['Adjusted TWR (YTD, No Div, USD)'] = format_twr_col(df['Adjusted TWR (YTD, No Div, USD)'])\n\ndf['Adjusted Value (1/31/2022, No Div, USD)'] = format_value_col(df['Adjusted Value (1/31/2022, No Div, USD)'].copy())\n\ndf['Inception Date'] = pd.to_datetime(df['Inception Date']).dt.strftime('%b %d, %Y')\n\ndf['Entity ID'] = df['Entity ID'].fillna('')\n
Run Code Online (Sandbox Code Playgroud)\n

还有...瞧\xc3\xa0:

\n
>>> pd.options.display.max_columns = None\n>>> df\n         New Entity Group Entity ID Adjusted Value (1/31/2022, No Div, USD)  Adjusted TWR (Current Quarter, No Div, USD) Adjusted TWR (YTD, No Div, USD)  Annualized Adjusted TWR (Since Inception, No Div, USD) Inception Date  Risk Target\n0             Portfolio_1                                          $260,786                                     (44.55%)                        (44.55%)                                            (44.55%)       Apr 07, 2021          N/A\n1  The FW Irrev Family Tr   9552252                                $260,786                                         0.0%                            0.0%                                                0.0%       Jan 11, 2022          N/A\n2             Portfolio_2                                       $18,396,664                                      (5.78%)                         (5.78%)                                             (5.47%)       Sep 03, 2021       Growth\n3                  FW DAF  10946585                             $18,396,664                                      (5.78%)                         (5.78%)                                             (5.47%)       Sep 03, 2021       Growth\n4             Portfolio_3                                       $60,143,818                                      (4.42%)                         (4.42%)                                             (7.75%)       Dec 17, 2020          NaN\n5     The FW Family Trust  13014080                                $475,356                                       (6.1%)                          (6.1%)                                             (3.97%)       Apr 09, 2021   Aggressive\n6       FW Liquid Fund LP  13396796                             $52,899,527                                      (4.15%)                         (4.15%)                                             (4.15%)       Dec 30, 2021   Aggressive\n7   FW Holdings No. 2 LLC   8413655                              $6,768,937                                      (0.77%)                         (0.77%)                                            (11.84%)       Mar 05, 2021          N/A\n8         FW and FR Joint   9957007                                    ($1)                                            -                               -                                                   -       Dec 21, 2021          N/A\n
Run Code Online (Sandbox Code Playgroud)\n