Ben*_*ius 16 merge r time-series zoo
我有两个多变量时间序列x和y,两者都覆盖了大致相同的时间范围(一个在另一个之前两年开始,但它们在同一天结束).两个系列都以日期列旁边的空列形式缺少观察结果,并且在某种意义上,其中一个系列具有在另一个系列中找不到的几个日期,反之亦然.
我想创建一个数据框(或类似),其中列列出了在x或y中找到的所有日期,没有重复日期.对于每个日期(行),我想在y的观察值旁边水平叠加来自x的观测值,其中NA填充缺失的单元格.例:
>x
"1987-01-01" 7.1 NA 3
"1987-01-02" 5.2 5 2
"1987-01-06" 2.3 NA 9
>y
"1987-01-01" 55.3 66 45
"1987-01-03" 77.3 87 34
# result I would like
"1987-01-01" 7.1 NA 3 55.3 66 45
"1987-01-02" 5.2 5 2 NA NA NA
"1987-01-03" NA NA NA 77.3 87 34
"1987-01-06" 2.3 NA 9 NA NA NA
Run Code Online (Sandbox Code Playgroud)
我尝试过:使用zoo包,我尝试了merge.zoo方法,但这似乎只是将两个系列相互叠加,并附有日期(作为数字,例如"1987-01-02"显示如每个系列中的6210)出现在两个单独的列中.
我已经坐了几个小时几乎无处可去,所以所有的帮助都表示赞赏.
编辑:根据Soumendra的建议,下面包含一些代码
atcoa <- read.csv(file = "ATCOA_full_adj.csv", header = TRUE)
atcob <- read.csv(file = "ATCOB_full_adj.csv", header = TRUE)
atcoa$date <- as.Date(atcoa$date)
atcob$date <- as.Date(atcob$date)
# only number of observations and the observations themselves differ
>str(atcoa)
'data.frame': 6151 obs. of 8 variables:
$ date :Class 'Date' num [1:6151] 6210 6213 6215 6216 6217 ...
$ max : num 4.31 4.33 4.38 4.18 4.13 4.05 4.08 4.05 4.08 4.1 ...
$ min : num 4.28 4.31 4.28 4.13 4.05 3.95 3.97 3.95 4 4.02 ...
$ close : num 4.31 4.33 4.31 4.15 4.1 3.97 4 3.97 4.08 4.02 ...
$ avg : num NA NA NA NA NA NA NA NA NA NA ...
$ tot.vol : int 877733 89724 889437 1927113 3050611 846525 1782774 1497998 2504466 5636999 ...
$ turnover : num 3762300 388900 3835900 8015900 12468100 ...
$ transactions: int 12 9 24 17 31 26 34 35 37 33 ...
>atcoa[1:1, ]
date a.max a.min a.close a.avg a.tot.vol a.turnover a.transactions
1 1987-01-02 4.31 4.28 4.31 NA 877733 3762300 12
# using timeSeries package
ts.atcoa <- timeSeries::as.timeSeries(atcoa, format = "%Y-%m-%d")
ts.atcob <- timeSeries::as.timeSeries(atcob, format = "%Y-%m-%d")
>str(ts.atcoa)
Time Series:
Name: object
Data Matrix:
Dimension: 6151 7
Column Names: a.max a.min a.close a.avg a.tot.vol a.turnover a.transactions
Row Names: 1970-01-01 01:43:30 ... 1970-01-01 04:12:35
Positions:
Start: 1970-01-01 01:43:30
End: 1970-01-01 04:12:35
With:
Format: %Y-%m-%d %H:%M:%S
FinCenter: GMT
Units: a.max a.min a.close a.avg a.tot.vol a.turnover a.transactions
Title: Time Series Object
Documentation: Wed Aug 17 13:00:50 2011
>ts.atcoa[1:1, ]
GMT
a.max a.min a.close a.avg a.tot.vol a.turnover a.transactions
1970-01-01 01:43:30 4.31 4.28 4.31 NA 877733 3762300 12
# The following will create an object of class "data frame" and mode "list", which contains observations for the days mutual for the two series
>ts.atco <- timeSeries::merge(atcoa, atcob) # produces same result as base::merge, apparently
>ts.atco[1:1, ]
date a.max a.min a.close a.avg a.tot.vol a.turnover a.transactions b.max b.min b.close b.avg b.tot.vol b.turnover b.transactions
1 1989-08-25 7.92 7.77 7.79 NA 269172 2119400 19 7.69 7.56 7.64 NA 81176693 593858000 12
Run Code Online (Sandbox Code Playgroud)
编辑:问题解决(使用动物园包)
atcoa <- read.zoo(read.csv(file = "ATCOA_full_adj.csv", header = TRUE))
atcob <- read.zoo(read.csv(file = "ATCOB_full_adj.csv", header = TRUE))
names(atcoa) <- c("a.max", "a.min", "a.close",
"a.avg", "a.tot.vol", "a.turnover", "a.transactions")
names(atcob) <- c("b.max", "b.min", "b.close",
"b.avg", "b.tot.vol", "b.turnover", "b.transactions")
atco <- merge.zoo(atcoa, atcob)
Run Code Online (Sandbox Code Playgroud)
感谢大家的帮助.
G. *_*eck 11
试试这个:
Lines.x <- '"1987-01-01" 7.1 NA 3
"1987-01-02" 5.2 5 2
"1987-01-06" 2.3 NA 9'
Lines.y <- '"1987-01-01" 55.3 66 45
"1987-01-03" 77.3 87 34'
library(zoo)
# in reality x might be in a file and might be read via: x <- read.zoo("x.dat")
# ditto for y. See ?read.zoo and the zoo-read vignette if you need other args too
x <- read.zoo(text = Lines.x)
y <- read.zoo(text = Lines.y)
merge(x, y)
Run Code Online (Sandbox Code Playgroud)
赠送:
V2.x V3.x V4.x V2.y V3.y V4.y
1987-01-01 7.1 NA 3 55.3 66 45
1987-01-02 5.2 5 2 NA NA NA
1987-01-03 NA NA NA 77.3 87 34
1987-01-06 2.3 NA 9 NA NA NA
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
26956 次 |
| 最近记录: |