NoS*_*per 2 python machine-learning scikit-learn keras tensorflow
我正在尝试通过 Sklearn 实现来校准我的 CNN 模型CalibratedClassifierCV
,尝试将其包装为KerasClassifier
并覆盖预测函数,但没有成功。有人可以说我做错了什么吗?这是模型代码:
def create_model():
model = Sequential()
model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu', input_shape=(28, 28 ,1) ))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Conv2D(64, kernel_size = (3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Conv2D(64, kernel_size = (3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.20))
model.add(Dense(24, activation = 'softmax'))
model.compile(loss = keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
return model
Run Code Online (Sandbox Code Playgroud)
这是我试图校准它:
model = KerasClassifier(build_fn=create_model,epochs=5, batch_size=128,validation_data=(evalX_cnn, eval_y_cnn))
model.fit(trainX_cnn, train_y_cnn)
model_c = CalibratedClassifierCV(base_estimator=model, cv='prefit')
model_c.fit(valX_cnn, val_y_cnn)
Run Code Online (Sandbox Code Playgroud)
输出 :
-------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-19-3d3ce9ce4fca> in <module>
----> 1 model_c.fit(np.array(valX_cnn), np.array(val_y_cnn))
~\anaconda3\lib\site-packages\sklearn\calibration.py in fit(self, X, y, sample_weight)
286 pred_method, method_name = _get_prediction_method(base_estimator)
287 n_classes = len(self.classes_)
--> 288 predictions = _compute_predictions(pred_method, method_name, X, n_classes)
289
290 calibrated_classifier = _fit_calibrator(
~\anaconda3\lib\site-packages\sklearn\calibration.py in _compute_predictions(pred_method, method_name, X, n_classes)
575 (X.shape[0], 1).
576 """
--> 577 predictions = pred_method(X=X)
578
579 if method_name == "decision_function":
TypeError: predict_proba() missing 1 required positional argument: 'x'
Run Code Online (Sandbox Code Playgroud)
valX_cnn 和 val_y_cnn 的类型为 np.array。
甚至尝试重写该方法:
keras.models.Model.predict_proba = keras.models.Model.predict
Run Code Online (Sandbox Code Playgroud)
问题是因为predict_proba
fromKerasClassifier
需要x
作为输入,而predict_proba
sklearn 的方法接受X
作为输入参数(注意区别:X
不是x
)。
您可以简单地将问题包装KerasClassifier
到新类中以纠正该predict_proba
方法。
samples,classes = 100,3
X = np.random.uniform(0,1, (samples,28,28,1))
Y = tf.keras.utils.to_categorical(np.random.randint(0,classes, (samples)))
class MyKerasClassifier(KerasClassifier):
def predict_proba(self, X):
return self.model.predict(X)
model = MyKerasClassifier(build_fn=create_model, epochs=3, batch_size=128)
model.fit(X, Y)
model_c = CalibratedClassifierCV(base_estimator=model, cv='prefit')
model_c.fit(X, Y)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
992 次 |
最近记录: |