使列表尽可能不排序的函数

ddo*_*org 59 python sorting algorithm

我正在寻找一个函数来使列表尽可能不排序。最好用Python。

背景故事:

我想检查 URL 状态并查看 URL 是否给出 404。我只使用asynciorequests模块。没有什么花哨。

现在我不想让服务器超载,所以我想尽量减少同时检查同一域上的 URL。我的想法是对 URL 进行排序,使列表中彼此接近的项目(具有相同的排序键 = 域名)尽可能远离彼此。

带有数字的示例:

a=[1,1,2,3,3]  # <== sorted list, sortness score = 2
   0,1,2,3,4   # <== positions
Run Code Online (Sandbox Code Playgroud)

可以未排序为:

b=[1,3,2,1,3]  # <== unsorted list, sortness score = 6
   0,1,2,3,4   # <== positions
Run Code Online (Sandbox Code Playgroud)

我想说,我们可以通过对相等项(具有相同的键 = 域名)之间的距离求和来计算排序分数。较高的排序意味着更好的未排序。也许有更好的方法来测试不排序。

列表的排序得分为a2。1 的距离总和为 (1-0)=1,2 的距离总和为 0,3 的距离总和为 (4-3)=1。

列表的排序得分为b6。1 的距离总和为 (3-0)=3,2 的距离总和为 0,3 的距离总和为 (4-1)=3。

URL 列表看起来像(域,URL)元组列表:

[
   ('example.com', 'http://example.com/404'),
   ('test.com', 'http://test.com/404'),
   ('test.com', 'http://test.com/405'),
   ('example.com', 'http://example.com/405'),
   ...
]
Run Code Online (Sandbox Code Playgroud)

我正在开发一个原型,它工作得还不错,但不是最佳的,因为我可以找到一些更好地手动排序的变体。

有人想尝试一下吗?

这是我的代码,但不太好:):

from collections import Counter
from collections import defaultdict
import math


def test_unsortness(lst:list) -> float:
    pos = defaultdict(list)
    score = 0
    # Store positions for each key
    # input = [1,3,2,3,1] => {1: [0, 4], 3: [1, 3], 2: [2]}
    for c,l in enumerate(lst):
        pos[l].append(c)
    for k,poslst in pos.items():
        for i in range(len(poslst)-1):
            score += math.sqrt(poslst[i+1] - poslst[i])
    return score


def unsort(lst:list) -> list:
    free_positions = list(range(0,len(lst)))
    output_list = [None] * len(free_positions)
    for val, count in Counter(lst).most_common():
        pos = 0
        step = len(free_positions) / count
        for i in range(count):
            output_list[free_positions[int(pos)]] = val
            free_positions[int(pos)] = None  # Remove position later
            pos = pos + step
        free_positions = [p for p in free_positions if p]
    return output_list


lsts = list()
lsts.append( [1,1,2,3,3] )
lsts.append( [1,3,2,3,1] )       # This has the worst score after unsort()
lsts.append( [1,2,3,0,1,2,3] )   # This has the worst score after unsort()
lsts.append( [3,2,1,0,1,2,3] )   # This has the worst score after unsort()
lsts.append( [3,2,1,3,1,2,3] )   # This has the worst score after unsort()
lsts.append( [1,2,3,4,5] )

for lst in lsts:
    ulst = unsort(lst)
    print( ( lst, '%.2f'%test_unsortness(lst), '====>', ulst, '%.2f'%test_unsortness(ulst), ) )

#  Original               score             Unsorted               score
#  -------                -----             --------               -----
# ([1, 1, 2, 3, 3],       '2.00',  '====>', [1, 3, 1, 3, 2],       '2.83')
# ([1, 3, 2, 3, 1],       '3.41',  '====>', [1, 3, 1, 3, 2],       '2.83')
# ([1, 2, 3, 0, 1, 2, 3], '6.00',  '====>', [1, 2, 3, 1, 2, 3, 0], '5.20')
# ([3, 2, 1, 0, 1, 2, 3], '5.86',  '====>', [3, 2, 1, 3, 2, 1, 0], '5.20')
# ([3, 2, 1, 3, 1, 2, 3], '6.88',  '====>', [3, 2, 3, 1, 3, 2, 1], '6.56')
# ([1, 2, 3, 4, 5],       '0.00',  '====>', [1, 2, 3, 4, 5],       '0.00')
Run Code Online (Sandbox Code Playgroud)

附言。我不只是在寻找随机函数,而且我知道有可以管理域负载的爬虫,但这是为了练习。

gfa*_*che 32

与其取消 URL 列表的排序,为什么不按域将它们分组,将每个 URL 放入一个队列中,然后以延迟(随机?) 的方式异步处理它们?

在我看来,它比你想要实现同样的事情要简单得多,如果你有很多域,你总是可以限制此时同时运行的数量。

  • 我想说OP正在询问如何不让他最终想要发送请求的服务器超载,所以我的答案只是,不要做你想做的事情,因为它对于需求来说似乎过于复杂,这是一个替代方案。听起来对我来说是一个有效的答案? (7认同)
  • @EricDuminil即使对列表进行取消排序并不是解决OP问题的最实用方法,我仍然认为这本身就是一个有趣的问题。 (3认同)
  • 你说得非常好。但这更多的是评论而不是答案。 (2认同)

aws*_*ice 18

我使用Google OR Tools来解决这个问题。我将其视为约束优化问题并以这种方式对其进行建模。

from collections import defaultdict
from itertools import chain, combinations
from ortools.sat.python import cp_model

model = cp_model.CpModel()
data = [
   ('example.com', 'http://example.com/404'),
   ('test.com', 'http://test.com/404'),
   ('test.com', 'http://test.com/405'),
   ('example.com', 'http://example.com/405'),
   ('google.com', 'http://google.com/404'),
   ('example.com', 'http://example.com/406'),
   ('stackoverflow.com', 'http://stackoverflow.com/404'),
   ('test.com', 'http://test.com/406'),
   ('example.com', 'http://example.com/407')
]

tmp = defaultdict(list)
for (domain, url) in sorted(data):
    var = model.NewIntVar(0, len(data) - 1, url)
    tmp[domain].append(var)  # store URLs as model variables where the key is the domain

vals = list(chain.from_iterable(tmp.values()))  # create a single list of all variables
model.AddAllDifferent(vals)  # all variables must occupy a unique spot in the output

constraint = []
for urls in tmp.values():
    if len(urls) == 1:  # a single domain does not need a specific constraint
        constraint.append(urls[0])
        continue
    combos = combinations(urls, 2)
    for (x, y) in combos:  # create combinations between each URL of a specific domain
        constraint.append((x - y))

model.Maximize(sum(constraint))  # maximize the distance between similar URLs from our constraint list

solver = cp_model.CpSolver()
status = solver.Solve(model)
output = [None for _ in range(len(data))]

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    for val in vals:
        idx = solver.Value(val)
        output[idx] = val.Name()

print(output)
['http://example.com/407',
 'http://test.com/406',
 'http://example.com/406',
 'http://test.com/405',
 'http://example.com/405',
 'http://stackoverflow.com/404',
 'http://google.com/404',
 'http://test.com/404',
 'http://example.com/404']
Run Code Online (Sandbox Code Playgroud)

  • 当然,我不知道将要打乱的列表的真实大小,但是组合爆炸不会成为问题吗?我认为 itertools 组合的使用在大 O 方面是不利的。请参阅此[帖子](/sf/ask/3739367551/ Python) (7认同)

Mat*_*ans 10

对于未排序,没有最适合您的明显定义,但这里至少有一些效果很好的定义:

  1. 对列表进行排序
  2. 如果列表的长度不是 2 的幂,则将项目均匀地分布在具有下一个 2 的幂大小的列表中
  3. 通过反转旧索引中的位来查找每个项目的新索引。
  4. 删除间隙以使列表恢复到其原始大小。

在排序顺序中,靠近的项目的索引通常仅在最小位上有所不同。通过反转位顺序,可以使靠近的项目的新索引在最大位上有所不同,因此它们最终会相距很远。

def bitreverse(x, bits):
    # reverse the lower 32 bits
    x = ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1)
    x = ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2)
    x = ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4)
    x = ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8)
    x = ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16)
    # take only the appropriate length
    return (x>>(32-bits)) & ((1<<bits)-1)

def antisort(inlist): 
    if len(inlist) < 3:
        return inlist
    inlist = sorted(inlist)
    #get the next power of 2 list length
    p2len = 2
    bits = 1
    while p2len < len(inlist):
        p2len *= 2
        bits += 1
    templist = [None] * p2len
    for i in range(len(inlist)):
        newi = i * p2len // len(inlist)
        newi = bitreverse(newi, bits)
        templist[newi] = inlist[i]
    return [item for item in templist if item != None]

print(antisort(["a","b","c","d","e","f","g",
    "h","i","j","k","l","m","n","o","p","q","r",
    "s","t","u","v","w","x","y","z"]))
Run Code Online (Sandbox Code Playgroud)

输出:

['a', 'n', 'h', 'u', 'e', 'r', 'k', 'x', 'c', 'p', 'f', 's',
 'm', 'z', 'b', 'o', 'i', 'v', 'l', 'y', 'd', 'q', 'j', 'w', 'g', 't']
Run Code Online (Sandbox Code Playgroud)

  • 我认为 - 如果我错了,OP会纠正我 - 目标不是采取排序序列并尽可能地打乱它,而是更多地采取具有重复项的值列表并重新排列它们以使其相同值彼此之间的间隔尽可能远。 (2认同)

Hom*_*mes 4

您可以实现倒排二分搜索。

from typing import Union, List

sorted_int_list = [1, 1, 2, 3, 3]
unsorted_int_list = [1, 3, 2, 1, 3]

sorted_str_list = [
    "example.com",
    "example.com",
    "test.com",
    "stackoverflow.com",
    "stackoverflow.com",
]
unsorted_str_list = [
    "example.com",
    "stackoverflow.com",
    "test.com",
    "example.com",
    "stackoverflow.com",
]


def inverted_binary_search(
    input_list: List[Union[str, int]],
    search_elem: Union[int, str],
    list_selector_start: int,
    list_selector_end: int,
) -> int:
    if list_selector_end - list_selector_start <= 1:
        if search_elem < input_list[list_selector_start]:
            return list_selector_start - 1
        else:
            return list_selector_start

    list_selector_mid = (list_selector_start + list_selector_end) // 2
    if input_list[list_selector_mid] > search_elem:
        return inverted_binary_search(
            input_list=input_list,
            search_elem=search_elem,
            list_selector_start=list_selector_mid,
            list_selector_end=list_selector_end,
        )
    elif input_list[list_selector_mid] < search_elem:
        return inverted_binary_search(
            input_list=input_list,
            search_elem=search_elem,
            list_selector_start=list_selector_start,
            list_selector_end=list_selector_mid,
        )
    else:
        return list_selector_mid


def inverted_binary_insertion_sort(your_list: List[Union[str, int]]):
    for idx in range(1, len(your_list)):
        selected_elem = your_list[idx]
        inverted_binary_search_position = (
            inverted_binary_search(
                input_list=your_list,
                search_elem=selected_elem,
                list_selector_start=0,
                list_selector_end=idx,
            )
            + 1
        )

        for idk in range(idx, inverted_binary_search_position, -1):
            your_list[idk] = your_list[idk - 1]

        your_list[inverted_binary_search_position] = selected_elem
    return your_list

Run Code Online (Sandbox Code Playgroud)

输出

inverted_sorted_int_list = inverted_binary_insertion_sort(sorted_int_list)
print(inverted_sorted_int_list)
>> [1, 3, 3, 2, 1]

inverted_sorted_str_list = inverted_binary_insertion_sort(sorted_str_list)
print(inverted_sorted_str_list)
>> ['example.com', 'stackoverflow.com', 'stackoverflow.com', 'test.com', 'example.com']
Run Code Online (Sandbox Code Playgroud)

更新:

根据注释,您还可以运行该函数两次。这将解开重复项。

inverted_sorted_int_list = inverted_binary_insertion_sort(
    inverted_binary_insertion_sort(sorted_int_list)
)
>> [1, 3, 2, 1, 3]
Run Code Online (Sandbox Code Playgroud)

  • 或者您可以在列表上运行两次“inverted_binary_insertion_sort” (2认同)