ddo*_*org 59 python sorting algorithm
我正在寻找一个函数来使列表尽可能不排序。最好用Python。
背景故事:
我想检查 URL 状态并查看 URL 是否给出 404。我只使用asyncio
和requests
模块。没有什么花哨。
现在我不想让服务器超载,所以我想尽量减少同时检查同一域上的 URL。我的想法是对 URL 进行排序,使列表中彼此接近的项目(具有相同的排序键 = 域名)尽可能远离彼此。
带有数字的示例:
a=[1,1,2,3,3] # <== sorted list, sortness score = 2
0,1,2,3,4 # <== positions
Run Code Online (Sandbox Code Playgroud)
可以未排序为:
b=[1,3,2,1,3] # <== unsorted list, sortness score = 6
0,1,2,3,4 # <== positions
Run Code Online (Sandbox Code Playgroud)
我想说,我们可以通过对相等项(具有相同的键 = 域名)之间的距离求和来计算排序分数。较高的排序意味着更好的未排序。也许有更好的方法来测试不排序。
列表的排序得分为a
2。1 的距离总和为 (1-0)=1,2 的距离总和为 0,3 的距离总和为 (4-3)=1。
列表的排序得分为b
6。1 的距离总和为 (3-0)=3,2 的距离总和为 0,3 的距离总和为 (4-1)=3。
URL 列表看起来像(域,URL)元组列表:
[
('example.com', 'http://example.com/404'),
('test.com', 'http://test.com/404'),
('test.com', 'http://test.com/405'),
('example.com', 'http://example.com/405'),
...
]
Run Code Online (Sandbox Code Playgroud)
我正在开发一个原型,它工作得还不错,但不是最佳的,因为我可以找到一些更好地手动排序的变体。
有人想尝试一下吗?
这是我的代码,但不太好:):
from collections import Counter
from collections import defaultdict
import math
def test_unsortness(lst:list) -> float:
pos = defaultdict(list)
score = 0
# Store positions for each key
# input = [1,3,2,3,1] => {1: [0, 4], 3: [1, 3], 2: [2]}
for c,l in enumerate(lst):
pos[l].append(c)
for k,poslst in pos.items():
for i in range(len(poslst)-1):
score += math.sqrt(poslst[i+1] - poslst[i])
return score
def unsort(lst:list) -> list:
free_positions = list(range(0,len(lst)))
output_list = [None] * len(free_positions)
for val, count in Counter(lst).most_common():
pos = 0
step = len(free_positions) / count
for i in range(count):
output_list[free_positions[int(pos)]] = val
free_positions[int(pos)] = None # Remove position later
pos = pos + step
free_positions = [p for p in free_positions if p]
return output_list
lsts = list()
lsts.append( [1,1,2,3,3] )
lsts.append( [1,3,2,3,1] ) # This has the worst score after unsort()
lsts.append( [1,2,3,0,1,2,3] ) # This has the worst score after unsort()
lsts.append( [3,2,1,0,1,2,3] ) # This has the worst score after unsort()
lsts.append( [3,2,1,3,1,2,3] ) # This has the worst score after unsort()
lsts.append( [1,2,3,4,5] )
for lst in lsts:
ulst = unsort(lst)
print( ( lst, '%.2f'%test_unsortness(lst), '====>', ulst, '%.2f'%test_unsortness(ulst), ) )
# Original score Unsorted score
# ------- ----- -------- -----
# ([1, 1, 2, 3, 3], '2.00', '====>', [1, 3, 1, 3, 2], '2.83')
# ([1, 3, 2, 3, 1], '3.41', '====>', [1, 3, 1, 3, 2], '2.83')
# ([1, 2, 3, 0, 1, 2, 3], '6.00', '====>', [1, 2, 3, 1, 2, 3, 0], '5.20')
# ([3, 2, 1, 0, 1, 2, 3], '5.86', '====>', [3, 2, 1, 3, 2, 1, 0], '5.20')
# ([3, 2, 1, 3, 1, 2, 3], '6.88', '====>', [3, 2, 3, 1, 3, 2, 1], '6.56')
# ([1, 2, 3, 4, 5], '0.00', '====>', [1, 2, 3, 4, 5], '0.00')
Run Code Online (Sandbox Code Playgroud)
附言。我不只是在寻找随机函数,而且我知道有可以管理域负载的爬虫,但这是为了练习。
gfa*_*che 32
与其取消 URL 列表的排序,为什么不按域将它们分组,将每个 URL 放入一个队列中,然后以延迟(随机?) 的方式异步处理它们?
在我看来,它比你想要实现同样的事情要简单得多,如果你有很多域,你总是可以限制此时同时运行的数量。
aws*_*ice 18
我使用Google OR Tools来解决这个问题。我将其视为约束优化问题并以这种方式对其进行建模。
from collections import defaultdict
from itertools import chain, combinations
from ortools.sat.python import cp_model
model = cp_model.CpModel()
data = [
('example.com', 'http://example.com/404'),
('test.com', 'http://test.com/404'),
('test.com', 'http://test.com/405'),
('example.com', 'http://example.com/405'),
('google.com', 'http://google.com/404'),
('example.com', 'http://example.com/406'),
('stackoverflow.com', 'http://stackoverflow.com/404'),
('test.com', 'http://test.com/406'),
('example.com', 'http://example.com/407')
]
tmp = defaultdict(list)
for (domain, url) in sorted(data):
var = model.NewIntVar(0, len(data) - 1, url)
tmp[domain].append(var) # store URLs as model variables where the key is the domain
vals = list(chain.from_iterable(tmp.values())) # create a single list of all variables
model.AddAllDifferent(vals) # all variables must occupy a unique spot in the output
constraint = []
for urls in tmp.values():
if len(urls) == 1: # a single domain does not need a specific constraint
constraint.append(urls[0])
continue
combos = combinations(urls, 2)
for (x, y) in combos: # create combinations between each URL of a specific domain
constraint.append((x - y))
model.Maximize(sum(constraint)) # maximize the distance between similar URLs from our constraint list
solver = cp_model.CpSolver()
status = solver.Solve(model)
output = [None for _ in range(len(data))]
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
for val in vals:
idx = solver.Value(val)
output[idx] = val.Name()
print(output)
['http://example.com/407',
'http://test.com/406',
'http://example.com/406',
'http://test.com/405',
'http://example.com/405',
'http://stackoverflow.com/404',
'http://google.com/404',
'http://test.com/404',
'http://example.com/404']
Run Code Online (Sandbox Code Playgroud)
Mat*_*ans 10
对于未排序,没有最适合您的明显定义,但这里至少有一些效果很好的定义:
在排序顺序中,靠近的项目的索引通常仅在最小位上有所不同。通过反转位顺序,可以使靠近的项目的新索引在最大位上有所不同,因此它们最终会相距很远。
def bitreverse(x, bits):
# reverse the lower 32 bits
x = ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1)
x = ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2)
x = ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4)
x = ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8)
x = ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16)
# take only the appropriate length
return (x>>(32-bits)) & ((1<<bits)-1)
def antisort(inlist):
if len(inlist) < 3:
return inlist
inlist = sorted(inlist)
#get the next power of 2 list length
p2len = 2
bits = 1
while p2len < len(inlist):
p2len *= 2
bits += 1
templist = [None] * p2len
for i in range(len(inlist)):
newi = i * p2len // len(inlist)
newi = bitreverse(newi, bits)
templist[newi] = inlist[i]
return [item for item in templist if item != None]
print(antisort(["a","b","c","d","e","f","g",
"h","i","j","k","l","m","n","o","p","q","r",
"s","t","u","v","w","x","y","z"]))
Run Code Online (Sandbox Code Playgroud)
输出:
['a', 'n', 'h', 'u', 'e', 'r', 'k', 'x', 'c', 'p', 'f', 's',
'm', 'z', 'b', 'o', 'i', 'v', 'l', 'y', 'd', 'q', 'j', 'w', 'g', 't']
Run Code Online (Sandbox Code Playgroud)
您可以实现倒排二分搜索。
from typing import Union, List
sorted_int_list = [1, 1, 2, 3, 3]
unsorted_int_list = [1, 3, 2, 1, 3]
sorted_str_list = [
"example.com",
"example.com",
"test.com",
"stackoverflow.com",
"stackoverflow.com",
]
unsorted_str_list = [
"example.com",
"stackoverflow.com",
"test.com",
"example.com",
"stackoverflow.com",
]
def inverted_binary_search(
input_list: List[Union[str, int]],
search_elem: Union[int, str],
list_selector_start: int,
list_selector_end: int,
) -> int:
if list_selector_end - list_selector_start <= 1:
if search_elem < input_list[list_selector_start]:
return list_selector_start - 1
else:
return list_selector_start
list_selector_mid = (list_selector_start + list_selector_end) // 2
if input_list[list_selector_mid] > search_elem:
return inverted_binary_search(
input_list=input_list,
search_elem=search_elem,
list_selector_start=list_selector_mid,
list_selector_end=list_selector_end,
)
elif input_list[list_selector_mid] < search_elem:
return inverted_binary_search(
input_list=input_list,
search_elem=search_elem,
list_selector_start=list_selector_start,
list_selector_end=list_selector_mid,
)
else:
return list_selector_mid
def inverted_binary_insertion_sort(your_list: List[Union[str, int]]):
for idx in range(1, len(your_list)):
selected_elem = your_list[idx]
inverted_binary_search_position = (
inverted_binary_search(
input_list=your_list,
search_elem=selected_elem,
list_selector_start=0,
list_selector_end=idx,
)
+ 1
)
for idk in range(idx, inverted_binary_search_position, -1):
your_list[idk] = your_list[idk - 1]
your_list[inverted_binary_search_position] = selected_elem
return your_list
Run Code Online (Sandbox Code Playgroud)
输出
inverted_sorted_int_list = inverted_binary_insertion_sort(sorted_int_list)
print(inverted_sorted_int_list)
>> [1, 3, 3, 2, 1]
inverted_sorted_str_list = inverted_binary_insertion_sort(sorted_str_list)
print(inverted_sorted_str_list)
>> ['example.com', 'stackoverflow.com', 'stackoverflow.com', 'test.com', 'example.com']
Run Code Online (Sandbox Code Playgroud)
更新:
根据注释,您还可以运行该函数两次。这将解开重复项。
inverted_sorted_int_list = inverted_binary_insertion_sort(
inverted_binary_insertion_sort(sorted_int_list)
)
>> [1, 3, 2, 1, 3]
Run Code Online (Sandbox Code Playgroud)