kab*_*cha 8 r cluster-analysis list
我有一个包含 2 个元素组合的列表,如下所示。
cbnl <- list(
c("A", "B"), c("B", "A"), c("C", "D"), c("E", "D"), c("F", "G"), c("H", "I"),
c("J", "K"), c("I", "H"), c("K", "J"), c("G", "F"), c("D", "C"), c("E", "C"),
c("D", "E"), c("C", "E")
)
Run Code Online (Sandbox Code Playgroud)
我想总结一下上面的列表。预期结果如下表所示。向量中元素的顺序在这里并不重要。
[[1]]
[1] "A" "B"
[[2]]
[1] "C" "D" "E"
[[3]]
[1] "F" "G"
[[4]]
[1] "H" "I"
[[5]]
[1] "J" "K"
Run Code Online (Sandbox Code Playgroud)
(规则1){A,B}等价于{B,A}。为了对应这一点,我想我可以做到这一点。
cbnl <- unique(lapply(cbnl, function(i) { sort(i) }))
Run Code Online (Sandbox Code Playgroud)
(规则2){A,B},{B,C}(其中一个元素是公共的)然后取两个集合的并集。结果是{A,B,C}。我没有明确的好主意来做到这一点。
有什么有效的方法可以做到这一点吗?
我知道这个答案更像是传统编程而不是“类似 R”,但它解决了问题。
cbnl <- unique(lapply(cbnl, sort))
i <- 1
count <- 1
out <- list()
while (i <= length(cbnl) - 1) {
if (sum(cbnl[[i]] %in% cbnl[[i + 1]]) == 0) {
out[[count]] <- cbnl[[i]]
} else {
out[[count]] <- sort(unique(c(cbnl[[i]], cbnl[[i + 1]])))
i <- i + 1
}
count <- count + 1
i <- i + 1
}
out
Run Code Online (Sandbox Code Playgroud)
给出,
[[1]]
[1] "A" "B"
[[2]]
[1] "C" "D" "E"
[[3]]
[1] "F" "G"
[[4]]
[1] "H" "I"
[[5]]
[1] "J" "K"
Run Code Online (Sandbox Code Playgroud)
您可以尝试以下igraph选项
library(igraph)
graph_from_data_frame(do.call(rbind, cbnl)) %>%
components() %>%
membership() %>%
stack() %>%
with(., split(as.character(ind), values))
Run Code Online (Sandbox Code Playgroud)
这使
$`1`
[1] "A" "B"
$`2`
[1] "C" "E" "D"
$`3`
[1] "F" "G"
$`4`
[1] "H" "I"
$`5`
[1] "J" "K"
Run Code Online (Sandbox Code Playgroud)
较短的一个
graph_from_data_frame(do.call(rbind, cbnl)) %>%
decompose() %>%
Map(function(x) names(V(x)), .)
Run Code Online (Sandbox Code Playgroud)
这使
[[1]]
[1] "A" "B"
[[2]]
[1] "C" "E" "D"
[[3]]
[1] "F" "G"
[[4]]
[1] "H" "I"
[[5]]
[1] "J" "K"
Run Code Online (Sandbox Code Playgroud)
基 R:如 中那样sort进行 ing ,然后根据唯一元素部分填充矩阵并删除行,最后强制。unionFUN=combnuduplicatedas.list
u <- Reduce(union, cbnl) ## get unique elements
res <- combn(cbnl, 2, \(x) {
if (length(intersect(x[[1]], x[[2]])) > 0) {
union(x[[1]], x[[2]])
} else {
el(x)
}
}, simplify=FALSE) |>
unique() |>
(\(x) sapply(x, \(i) replace(rep(NA, length(u)), match(i, u), i)))() |>
(\(x) x[, !colSums(duplicated(x, MARGIN=1:2)) == nrow(x)])() |>
(\(x) unname(lapply(as.list(as.data.frame(x)), \(x) x[!is.na(x)])))()
res
# [[1]]
# [1] "A" "B"
#
# [[2]]
# [1] "C" "D" "E"
#
# [[3]]
# [1] "F" "G"
#
# [[4]]
# [1] "H" "I"
#
# [[5]]
# [1] "J" "K"
Run Code Online (Sandbox Code Playgroud)
笔记:
> R.version.string
[1] "R version 4.1.2 (2021-11-01)"
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
325 次 |
| 最近记录: |