use*_*651 6 deep-learning pytorch fast-ai
当我使用 fast.ai 运行训练时,仅使用 CPU,即使
import torch; print(torch.cuda.is_available())
Run Code Online (Sandbox Code Playgroud)
显示 CUDA 可用,并且 GPU 上的一些内存被我的训练过程占用。
from main import DefectsImagesDataset
from fastai.vision.all import *
import numpy as np
NUM_ELEMENTS = 1e5
CSV_FILES = {
'events_path':
'./data/events.csv',
'defects_path':
'./data/defects2020_all.csv',
}
defects_dataset = DefectsImagesDataset(CSV_FILES['defects_path'], CSV_FILES['events_path'], NUM_ELEMENTS, window_size=10000)
model = models.resnet34
BATCH_SIZE = 16
NUMBER_WORKERS = 8
dls = DataLoaders.from_dsets(defects_dataset, defects_dataset, bs=BATCH_SIZE, num_workers=NUMBER_WORKERS)
import torch; print(torch.cuda.is_available())
loss_func = nn.CrossEntropyLoss()
learn = cnn_learner(dls, models.resnet34, metrics=error_rate, n_out=30, loss_func=loss_func)
learn.fit_one_cycle(1)
Run Code Online (Sandbox Code Playgroud)
CUDA 版本:11.5
Fast.ai-版本:2.5.3
如何让 fast.ai 使用 GPU?
创建数据加载器时我必须指定设备。代替
dls = DataLoaders.from_dsets(
defects_dataset,
defects_dataset,
bs=BATCH_SIZE,
num_workers=NUMBER_WORKERS)
Run Code Online (Sandbox Code Playgroud)
我知道有
dls = DataLoaders.from_dsets(
defects_dataset,
defects_dataset,
bs=BATCH_SIZE,
num_workers=NUMBER_WORKERS,
device=torch.device('cuda'))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3639 次 |
| 最近记录: |