pyspark 结构化流式 kafka - py4j.protocol.Py4JJavaError:调用 o41.save 时发生错误

Kar*_*ang 2 python apache-kafka apache-spark pyspark

我有一个简单的 PySpark 程序,它将数据发布到 kafka 中。当我执行 Spark-Submit 时,它给出错误

正在运行的命令:

spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.13:3.2.0 ~/PycharmProjects/Kafka/PySpark_Kafka_SSL.py
Run Code Online (Sandbox Code Playgroud)

错误 :

Traceback (most recent call last):
  File "/Users/karanalang/PycharmProjects/Kafka/PySpark_Kafka_SSL.py", line 33, in <module>
    df.write.format('kafka')\
  File "/Users/karanalang/Documents/Technology/spark-3.2.0-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 738, in save
  File "/Users/karanalang/Documents/Technology/spark-3.2.0-bin-hadoop3.2/python/lib/py4j-0.10.9.2-src.zip/py4j/java_gateway.py", line 1309, in __call__
  File "/Users/karanalang/Documents/Technology/spark-3.2.0-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/sql/utils.py", line 111, in deco
  File "/Users/karanalang/Documents/Technology/spark-3.2.0-bin-hadoop3.2/python/lib/py4j-0.10.9.2-src.zip/py4j/protocol.py", line 326, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o41.save.
: java.lang.NoClassDefFoundError: scala/$less$colon$less
    at org.apache.spark.sql.kafka010.KafkaSourceProvider.createRelation(KafkaSourceProvider.scala:180)
    at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:45)
    at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:75)
    at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:73)
    at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:84)
    at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:110)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
    at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:110)
    at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:106)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:481)
    at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82)
    at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:481)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
    at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
    at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
    at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:457)
    at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:106)
    at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:93)
    at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:91)
    at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:128)
    at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:848)
    at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:382)
    at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:355)
    at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:247)
    at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.base/java.lang.reflect.Method.invoke(Method.java:566)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
    at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
    at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: java.lang.ClassNotFoundException: scala.$less$colon$less
    at java.base/java.net.URLClassLoader.findClass(URLClassLoader.java:476)
    at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:589)
    at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:522)
    ... 42 more

Run Code Online (Sandbox Code Playgroud)

火花版本 - 3.2.0;我已经在我的 m/c 上安装了 confluence kafka,这是版本:

Karans-MacBook-Pro:confluent-6.2.1 karanalang$ confluent local services kafka version
The local commands are intended for a single-node development environment only,
NOT for production usage. https://docs.confluent.io/current/cli/index.html

6.2.1-ce
Run Code Online (Sandbox Code Playgroud)

这是代码:

import sys, datetime, time, os
from pyspark.sql.functions import col, rank, dense_rank, to_date, to_timestamp, format_number, row_number, lead, lag,monotonically_increasing_id
from pyspark.sql import SparkSession, Window


spark = SparkSession.builder.appName('StructuredStreaming_KafkaProducer').getOrCreate()

kafkaBrokers='host:port'
# CA Root certificate ca.crt
caRootLocation='/Users/karanalang/Documents/Technology/strimzi/gcp-certs-dec3/caroot.pem'
# user public (user.crt)
certLocation='/Users/karanalang/Documents/Technology/strimzi/gcp-certs-dec3/my-bridge/my-bridge-user-crt.pem'
# user.key
keyLocation='/Users/karanalang/Documents/Technology/strimzi/gcp-certs-dec3/my-bridge/user-with-certs.pem'
password='passwd'
topic = "my-topic"

df = spark.read.csv("data/input.txt", header=False)

df.write.format('kafka')\
    .option("kafka.bootstrap.servers",kafkaBrokers)\
    .option("security.protocol","SSL")\
    .option("ssl.ca.location",caRootLocation)\
    .option("ssl.certificate.location", certLocation)\
    .option("ssl.key.location",keyLocation)\
    .option("ssl.key.password",password)\
    .option("subscribe", topic) \
    .save()
Run Code Online (Sandbox Code Playgroud)

有什么想法吗?Spark版本似乎与jar tia匹配!

vla*_*siv 6

错误:

\n
\n

引起原因:java.lang.ClassNotFoundException:scala.$less$colon$less

\n
\n

通常当 Scala 版本出现问题时会弹出。

\n

如果运行spark-shell,您将得到输出:

\n
Welcome to\n      ____              __\n     / __/__  ___ _____/ /__\n    _\\ \\/ _ \\/ _ `/ __/  \'_/\n   /___/ .__/\\_,_/_/ /_/\\_\\   version 3.2.0\n      /_/\n         \nUsing Scala version 2.12.15 (OpenJDK 64-Bit Server VM, Java 1.8.0_292)\n
Run Code Online (Sandbox Code Playgroud)\n

它说:Using Scala version 2.12.15

\n
\n

它还提到:“对于 Scala API,Spark 3.2.0 使用 Scala 2.12。您将需要使用兼容的 Scala 版本 (2.12.x)”,在文档

\n
\n

但是当我们查看spark-sql-kafka-0-10_2.13:3.2.0Maven 存储库中的:Kafka 0.10+ Source For Structured Streaming \xc2\xbb 3.2.0时,它显示:Scala 目标:Scala 2.13

\n

我会尝试在 中指定 Scala 版本spark-sql-kafka,您可以通过“查看所有目标”找到所需的 Scala 版本。

\n

尝试使用:Kafka 0.10+ 结构化流源 \xc2\xbb 3.2.0

\n
\n

请注意更改:\nspark-sql-kafka-0-10_2.13:3.2.0 -> Spark-sql-kafka-0-10_2.12:3.2.0

\n
\n
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0 ~/PycharmProjects/Kafka/PySpark_Kafka_SSL.py\n
Run Code Online (Sandbox Code Playgroud)\n